
GeoSteiner 5.1

User’s Guide and Reference Manual

Copyright c© 2004, 2017 by David M. Warme, Pawel Winter and Martin Zachariasen.

This work is licenced under a Creative Commons
Attribution 4.0 International License.

2

Contents

1 Introduction 1
1.1 Steiner tree problems . 2
1.2 Callable library . 2
1.3 Stand-alone programs . 4
1.4 Historic note and literature . 4

2 Callable Library User’s Guide 6
2.1 High-level interfaces . 6
2.2 Low-level interfaces . 8
2.3 Algorithmic callback functions 11

3 Callable Library Functions 14
3.1 Application programming interface14
3.2 Design of library . 14
3.3 Library objects . 15

3.3.1 GeoSteiner environment 15
3.3.2 Parameter set . 15
3.3.3 Problem instance . 15
3.3.4 Problem solution state 16
3.3.5 Auxiliary objects . 16

3.4 Opening and closing GeoSteiner environment 18
3.5 High-level optimization functions28
3.6 Parameter setting and querying functions 35
3.7 Metric setting and querying functions55
3.8 Property list setting and querying functions 61
3.9 Hypergraph functions . 75
3.10 FST generation and pruning functions103
3.11 Hypergraph optimization functions 109
3.12 Message handling functions . 118
3.13 Input and output functions . 129
3.14 Miscellaneous functions . 138

4 Stand-Alone Programs 140

References 157

i

A Library Parameters 158
A.1 FST generation parameters . 159
A.2 LP solver parameters . 162
A.3 Hypergraph solver algorithmic options 163
A.4 Hypergraph solver stopping conditions 169
A.5 Hypergraph solver input/output options 171

B Hypergraph Properties 174

C Solver Properties 175

D Error Codes 176

E FST Data File Formats 177

ii

iii

Preface

This manual documents GeoSteiner version 5.1 — an optimization software pack-
age for solving Steiner tree problems. GeoSteiner version 4.0 was a proprietary
commercial product, that was released in substantially identical form under an
open source form beginning with version 5.0. GeoSteiner version 3.1 is still avail-
able fromwww.geosteiner.com under an academic license, but is no longer
supported.

Version 5.1 contains significant improvements over the previous version (Geo-
Steiner 3.1); these improvements are both functional and structural. By far the
largest structural change is that the core optimization algorithms have now been
encapsulated into a library of callable subroutines. This greatly facilitates the in-
corporation of GeoSteiner into other applications. Indeed, the old familiar stand-
alone programs from version 3.1 have now been completely re-implemented to
use only the documented library interfaces. The ability to use function calls in-
stead of program calls from applications provides for more efficient solution of
(large) series of problem instances; such applications occur frequently in, e.g.,
VLSI layout. In addition, the library interfaces provide greater control of the so-
lution process when needed.

The authors would like to thank Benny K. Nielsen, who has beenthe programmer
on the callable library project. In addition, Benny has written a major part of the
new FST generator for uniformly-oriented Steiner trees.

Copenhagen/Washington, January 2017

David M. Warme
Pawel Winter

Martin Zachariasen

1

1 Introduction

GeoSteiner is a software package for solving Steiner tree problems. The package
currently solves the following NP-hard problems in the plane1:

• Euclidean Steiner tree problem.

• Rectilinear Steiner tree problem.

• Uniformly-oriented Steiner tree problem (including hexagonal and octilin-
ear Steiner tree problems).

In addition, the package gives the user access to a powerful solver for

• Minimum spanning tree in hypergraph (MSTHG) problem.

The solver for this NP-hard problem is used as a subroutine inthe solution of the
above geometric problems.

GeoSteiner is written in ANSI C. The code makes heavy use of linear program-
ming (LP); the public domain LP-solverlp solve is included (in a significantly
modified form). However, the package also supportsCPLEX, a proprietary prod-
uct of IBM Inc., which is perhaps the fastest and most robust LP-solver available.
The authors of GeoSteiner strongly recommend that you use CPLEX if at all pos-
sible — especially for production applications or published computational studies.
The core callable library requires no supplementary software or libraries (except
the CPLEX library if GeoSteiner is configured to use CPLEX as its LP solver).

In this introductory section we first define the problems thatare solved by Geo-
Steiner, and give some fundamental definitions and acronymsused throughout
this manual (Section 1.1). Then an introduction to the callable library and associ-
ated stand-alone problems is given (Sections 1.2 and 1.3). Finally, we give some
historic background on GeoSteiner in Section 1.4.

1Problem definitions are given in Section 1.1.

2 1 INTRODUCTION

1.1 Steiner tree problems

Given a metric and a (finite) set of points in the plane, also denoted terminals, a
Steiner minimum tree (SMT) is a shortest possible interconnection of the termi-
nals. This interconnection must be a tree, and may contain junctions that are not
among the terminals, so-calledSteiner points. In Figure 1 we show four differ-
ent SMTs for the same set of terminals. These are SMTs under the Euclidean,
rectilinear, hexagonal and octilinear metric, respectively.

All metrics currently handled by GeoSteiner areuniformly oriented metrics: Given
a set ofλ ≥ 2 uniformly oriented directions in the plane, the distance between two
points is defined to be the length of a shortest path in which all line segments have
one of the given directions. As special cases we have the rectilinear (λ = 2),
hexagonal (λ = 3), octilinear (λ = 4) and Euclidean (λ = ∞) metric.

If we break an SMT at all terminals having two or more incidentedges, each
component will be a so-calledfull Steiner tree (FST). These are trees in which
all terminals are leaves. The fact that the number of terminals in each FST in an
SMT usually is small is what makes it possible to solve large problem instances to
optimality. More specifically, the algorithms employed by GeoSteiner first gen-
erate a set of FSTs known to contain an SMT as a subset, and thenthe shortest
possible union of FSTs interconnecting all terminals is selected; we say that the
FSTs are concatenated. The concatenation problem is equivalent to finding amin-
imum spanning tree in a hypergraph (problem MSTHG). An efficient solver for
this subproblem forms a cornerstone of GeoSteiner.

1.2 Callable library

The kernel of GeoSteiner is the callable library. Both high-level and low-level
interfaces are provided. Also included are powerful routines for manipulating var-
ious algorithmic parameters, handling messages, and accessing problem instance
data in various formats.

The high-level interfaces give the user easy access to the basic algorithms in the
library. Problem instances are given as simple arrays, and the functions return
optimal solutions to the problem instances.

Low-level interfaces are provided for users who need more control over the solu-

1.2 Callable library 3

Euclidean SMT: 20 points, length = 30213.19418714918, 0.01 seconds Rectilinear SMT: 20 points, length = 34767, 0.00 seconds

Hexagonal SMT: 20 points, length = 32447.53363589430, 0.01 seconds Octilinear SMT: 20 points, length = 31382.81130634991, 0.01 seconds

Figure 1: SMTs for the same set of terminals under different metrics (output from
GeoSteiner).

4 1 INTRODUCTION

tion process. Also, the low-level interfaces are used by thestand-alone programs
that accompany the callable library. For more details on thedesign and structure
of the callable library, please consult the user’s guide in Section 2 and the callable
library reference manual in Section 3.

1.3 Stand-alone programs

The stand-alone programs are provided for users who would like to solve Steiner
tree problems without writing their own application programs. For example, if
the coordinates of the given problem instance are given in a file, the stand-alone
programs give the user the opportunity to solve the instanceand make a postscript
plot of the solution. A complete list of all stand-alone programs, including docu-
mentation of their invocation options, and examples of their use are given in Sec-
tion 4.

1.4 Historic note and literature

To the best knowledge of the authors, as of January 2017, GeoSteiner represents
the computational state of the art for geometric Steiner tree problems in the plane
under each of the following metrics:

• Euclidean

• Rectilinear

• Uniformly oriented metrics

Furthermore, GeoSteiner has held this dominant position continuously since at
least 1998. During the11th DIMACS Implementation Challenge (December,
2015) no other algorithms world-wide were entered into any of these problem
categories. (Because GeoSteiner was only entrant in each ofthese categories, no
competition was performed — which is why GeoSteiner does notappear in any
of the official DIMACS 11 competition results.)

The “GeoSteiner” name was coined (and is therefore “owned”)by Pawel Winter,
whose seminal program GEOSTEINER started it all back in 1985[7]. In 1996
Winter and Zachariasen published an improved algorithm called “GeoSteiner96” [8].

1.4 Historic note and literature 5

On the other hand, Warme’s first Steiner tree code was the Salowe-Warme algo-
rithm in 1993, which used backtrack search to concatenate rectilinear FSTs [3].
In 1998, Warme’s Ph.D. dissertation [5] described a new branch-and-cut code for
finding minimum spanning trees in arbitrary hypergraphs — which was applied
to the FST concatenation problem for both rectilinear and Euclidean FSTs.

The first distribution of the combined code therefore represented the “third ver-
sion” of each group’s code, and it was thus named GeoSteiner version 3.0. This
and subsequent versions continue that naming convention.

The algorithms in GeoSteiner 3.0 are based on those described in [6, 8, 9].

GeoSteiner 4.0 was a proprietary commercial product which introduced the callable
library interfaces, and support for solving uniformly-oriented Steiner trees [2]. In
addition, a number of minor improvements were made throughout the code.

Upon termination of commercial operations in 2015, the GeoSteiner code was
released once again in open source form as GeoSteiner version 5.0, and its various
successors.

6 2 CALLABLE LIBRARY USER’S GUIDE

2 Callable Library User’s Guide

In this section we give a number of examples of using the callable library. We
start with a few simple uses of the high-level functions, then move to the low-
level interfaces, and finally, we discuss the use of callbackfunctions.

2.1 High-level interfaces

Any application program that uses the GeoSteiner library must include the Geo-
Steiner header filegeosteiner.h. Furthermore, the GeoSteiner environment
must be opened using the functiongst open geosteiner()as described in Sec-
tion 3.4 on page 18.

Our first example, shown in Figure 2, computes an Euclidean SMT for the points
(0, 0), (0, 1), (1, 0) and(1, 1). After having successfully opened the GeoSteiner
environment, we use the high-level functiongst esmt()to compute the SMT (see
page 30). As arguments we first pass the number of terminals, here 4, and then a
double arrayterms that holds the terminal point coordinates. Then follow the vari-
ableslength, nspsandsps, in which the length of the computed SMT, the number
of Steiner points and the coordinates of the Steiner points will be returned. The
remaining arguments togst esmt() are all given as NULL, causing correspond-
ing inputs to assume default values, and corresponding outputs to be ignored; in
particular the edges of the optimal solution and the solution status are all ignored,
and default values are assumed for all GeoSteiner parameters.

In the program we assume thatgst esmt()returns successfully — the return code
is not checked — and then we print the length of the SMT and the (two) Steiner
points. Finally, we close the GeoSteiner environment and the program ends. We
encourage you to run thedemo1 program that comes with the GeoSteiner distri-
bution.

Our next example,demo2, computes a series of SMTs for randomly generated
points sets (Figure 3). This program has two command line parameters: Firstly,
theλ-value for the uniformly oriented metric that is to be used — whereλ = 0 is
defined to be the Euclidean metric; secondly, the required maximum excess from
optimum in percent. As an example, “demo2 4 1” computes Steiner trees using
the octilinear metric whose length are at most1% from optimum.

2.1 High-level interfaces 7

#include "geosteiner.h"
#include "stdlib.h"

int main (int argc, char** argv)
{

double terms [8] = { 0, 0,
0, 1,
1, 0,
1, 1 };

int i, nsps;
double length, sps [4];

/* Open GeoSteiner environment */
if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");
exit (1);

}

/* Compute Euclidean Steiner tree */
gst_esmt (4, terms, &length, &nsps, sps, NULL, NULL, NULL, NULL);

/* Display information about solution */
printf ("Steiner tree has length %f\n", length);

for (i = 0; i < nsps; i++) {
printf ("Steiner point: (%f, %f)\n", sps[2*i], sps[2*i+1]);

}

/* Close GeoSteiner environment */
gst_close_geosteiner ();

exit (0);
}

Figure 2: Demo program that computes an Euclidean SMT for four terminals
(demo1.c)

8 2 CALLABLE LIBRARY USER’S GUIDE

In the program we first read the command line parameters and then create a met-
ric object (see Section 3.7) that corresponds to the given command line para-
meter. Then we create a default parameter set (see Section 3.6) and change the
GST PARAM GAP TARGET parameter (see Appendix A). Finally, we compute
the SMTs using the high-level functiongst smt() which takes the metric object
and parameter set as arguments. Only the SMT length is returned fromgst smt(),
and based on this the total length of all SMTs is computed and displayed.

Our third example, shown in Figure 4, is similar to the previous example, but
instead of generating the terminal coordinates using a random number generator,
we read the terminal coordinates from input. The input is assumed to be in the
OR-library format2. The program reads every instance in the file and computes
an SMT for each. The metric is given as the first command line parameter to
the program. Furthermore, the maximum FST size (number of terminals) can be
specified as the second command line parameter. By giving (small) bound on the
FST size, the running time of FST generation may decrease significantly — at the
cost of not necessarily returning the optimal solution.

2.2 Low-level interfaces

The low-level interfaces completely separate FST generation and FST concatena-
tion, the two components of the exact algorithm used by GeoSteiner. Thus it is
possible to use alternative FST generation or concatenation algorithms — or to
store away generated FSTs and concatenate them at a later time.

Another advantage of using the low-level interfaces is the greater control they
provide over the solution process, in particular with respect to solving the FST
concatenation problem. For most large instances the FST concatenation problem
— which is equivalent to solving a MSTHG problem — is by far themost time-
consuming part of the solution process.

As for the high-level interfaces, programs that use the low-level interfaces must
include the GeoSteiner header file and open the GeoSteiner environment. In the
example given in Figure 5 we construct a large random terminal set, generate
the rectilinear FSTs, and set up a solution state object for the MSTHG problem
(see Section 3.11). One of the parameters passed to the solution state object is

2OR-library: http://www.ms.ic.ac.uk/info.html

2.2 Low-level interfaces 9

#include <math.h>
#include <stdlib.h>
#include "geosteiner.h"

#define NUM_INSTANCES 10
#define NUM_TERMS 50

int main (int argc, char** argv)
{

int i, j, lambda = 2;
double terms[2*NUM_TERMS], length, total_length = 0.0, max_excess = 0.0;
gst_metric_ptr metric;
gst_param_ptr params;

/* Read command line parameters (metric and max. excess in percent) */
if (argc >= 2) lambda = atoi (argv[1]);
if (argc >= 3) max_excess = atof (argv[2]);

/* Open GeoSteiner environment */
if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");
exit (1);

}

/* Set up metric */
switch (lambda) {
case 0: /* Euclidean metric */

metric = gst_create_metric (GST_METRIC_L, 2, NULL); break;
case 2: /* Rectilinear metric */

metric = gst_create_metric (GST_METRIC_L, 1, NULL); break;
default:/* General uniform metric */

metric = gst_create_metric (GST_METRIC_UNIFORM, lambda, NULL);
}

/* Set up parameter set */
params = gst_create_param (NULL);
gst_set_dbl_param (params, GST_PARAM_GAP_TARGET, 1.0 + (max_excess/100.0));

/* Generate NUM_INSTANCES random instances with NUM_TERMS terminals */
srand48 (1);
for (i = 1; i <= NUM_INSTANCES; i++) {

/* Generate random points with coordinates in range 0..9999 */
for (j = 0; j < 2*NUM_TERMS; j++)

terms[j] = floor (drand48() * 10000.0);

/* Compute Steiner tree and print length */
gst_smt (NUM_TERMS, terms, &length, NULL, NULL, NULL, NULL, NULL,

metric, params);
printf ("Instance %2d has length %f\n", i, length);
total_length += length;

}
printf ("\nTotal length of all instances is %f\n", total_length);

/* Clean up */
gst_free_metric (metric);
gst_free_param (params);
gst_close_geosteiner ();

exit (0);
}

Figure 3: Demo program that computes SMTs for a series of randomly generated
problem instances (demo2.c).

10 2 CALLABLE LIBRARY USER’S GUIDE

#include <stdlib.h>
#include "geosteiner.h"

int main (int argc, char** argv)
{

int i, lambda = 2, num_instances, num_terms;
double * terms, length, total_length = 0.0, max_fst_size = 0;
gst_metric_ptr metric;
gst_param_ptr params;

/* Read command line parameters (metric and max. FST size) */
if (argc >= 2) lambda = atoi (argv [1]);
if (argc >= 3) max_fst_size = atof (argv [2]);

/* Open GeoSteiner environment */
if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");
exit (1);

}

/* Set up metric */
switch (lambda) {
case 0: /* Euclidean metric */

metric = gst_create_metric (GST_METRIC_L, 2, NULL); break;
case 2: /* Rectilinear metric */

metric = gst_create_metric (GST_METRIC_L, 1, NULL); break;
default:/* General uniform metric */

metric = gst_create_metric (GST_METRIC_UNIFORM, lambda, NULL);
}

/* Set up parameter set */
params = gst_create_param (NULL);
if (max_fst_size >= 2)

gst_set_int_param (params, GST_PARAM_MAX_FST_SIZE, max_fst_size);

/* Read the number of instances and then the instances thenselves */
scanf ("%d", &num_instances);
for (i = 1; i <= num_instances; i++) {

/* Read instance from stdin */
scanf ("%d", &num_terms);
terms = (double *) malloc (2*num_terms*sizeof(double));
gst_get_points (stdin, num_terms, &terms, NULL);

/* Compute Steiner tree */
gst_smt (num_terms, terms, &length, NULL, NULL, NULL, NULL, NULL,

metric, params);

printf ("Instance %5d has %5d terminals and length %f\n",
i, num_terms, length);

total_length += length;
free (terms);

}
printf ("\nTotal length of all instances is %f\n", total_length);

/* Clean up */
gst_free_metric (metric);
gst_free_param (params);
gst_close_geosteiner ();

exit (0);
}

Figure 4: Demo program that computes SMTs for a series of instances read from
an OR-library file (demo3.c).

2.3 Algorithmic callback functions 11

GST PARAM CPU TIME LIMIT, which limits the amount of time spent in the
solver before returning to the application program.

In the main loop of the program we run the MSTHG solver by callinggst hg solve(),
passing the solution state object as an argument. When this function returns, we
query the solution state object for the current solution status; this is done by calling
gst get solver status()which returns a code that represents the four possibilities
(optimal solution, feasible solution, infeasible problem, no feasible solution yet).

If a feasible solution has been found, the current upper and lower bound is ob-
tained by querying the solution state property list. In our example we repeat the
main loop until we have found a feasible solution that is within the maximum
specified excess from optimum.

2.3 Algorithmic callback functions

Although the implementation of the callback interface is rather incomplete at this
time, callback functions provide the lowest-level — and perhaps most powerful —
of all the interfaces in the GeoSteiner callable library. Callbacks are user-written
functions. Such functions become callbacks by passing their address to suitable
GeoSteiner routines. Once a function is established as a callback in this manner,
GeoSteiner automatically invokes the function at the corresponding critical points
in the branch-and-cut algorithm. For example, the user can provide callback rou-
tines that are invoked every time

• an LP is solved during the optimize / separate loop,

• processing of a branch-and-bound node completes,

• a new lower bound is obtained,

• a new upper bound is obtained,

• a branch variable is selected.

Callback functions permit the user to extend the GeoSteineroptimization algo-
rithms by incorporating application specific knowledge into some of GeoSteiner’s
most critical decisions. As an example, thebb program (see Section 4) uses

12 2 CALLABLE LIBRARY USER’S GUIDE

#include <math.h>
#include <stdlib.h>
#include "geosteiner.h"

#define NUM_TERMS 1000
#define TIME_INTERVAL 2
#define MAX_EXCESS 0.1

int main (int argc, char** argv)
{

int j, status, soln_status;
double terms[2*NUM_TERMS], lb, ub, cpu;
gst_hg_ptr hg; gst_solver_ptr solver; gst_param_ptr params;

/* Open GeoSteiner environment */
if (gst_open_geosteiner () != 0) {

printf ("Could not open GeoSteiner.\n");
exit (1);

}
/* Generate random terminals with coordinates in range 0..9999 */
srand48 (1);
for (j = 0; j < 2*NUM_TERMS; j++)

terms[j] = floor (drand48 () * 10000.0);
/* Generate full Steiner trees (default parameters) */
hg = gst_generate_rfsts (NUM_TERMS, terms, NULL, &status);
/* Set up solver and its parameters */
params = gst_create_param (&status);
gst_set_dbl_param (params, GST_PARAM_CPU_TIME_LIMIT, TIME_INTERVAL);
solver = gst_create_solver (hg, params, &status);

for (;;) {
gst_hg_solve (solver, NULL);
gst_get_solver_status (solver, &soln_status);
switch (soln_status) {

case GST_STATUS_OPTIMAL:
case GST_STATUS_FEASIBLE:

gst_get_dbl_property (gst_get_solver_properties (solver),
GST_PROP_SOLVER_LOWER_BOUND, &lb);

gst_get_dbl_property (gst_get_solver_properties (solver),
GST_PROP_SOLVER_CPU_TIME, &cpu);

gst_hg_solution (solver, NULL, NULL, &ub, 0);

printf ("Time: %.2f. LB = %f, UB = %f, ratio = %f\n",
cpu, lb, ub, ub/lb); break;

case GST_STATUS_INFEASIBLE:
printf ("Problem is infeasible!\n"); break;

case GST_STATUS_NO_FEASIBLE:
gst_get_dbl_property (gst_get_solver_properties (solver),

GST_PROP_SOLVER_CPU_TIME, &cpu);
printf ("Time: %.2f. No feasible solution found yet.\n", cpu);

}
if (soln_status == GST_STATUS_OPTIMAL) break;
if ((soln_status == GST_STATUS_FEASIBLE) &&

(ub/lb < 1.0 + (MAX_EXCESS / 100.0))) break;
}
/* Clean up */
gst_free_solver (solver); gst_free_hg (hg);
gst_free_param (params); gst_close_geosteiner ();
exit (0);

}

Figure 5: Demo program that computes a rectilinear Steiner tree (not necessarily
minimal) for a large random terminal set. The upper bound/lower bound gap is
displayed at fixed running time intervals (demo4.c).

2.3 Algorithmic callback functions 13

callbacks to implement thebb -r switch: a callback function is defined that is
invoked upon completion of every node. When invoked for the root node, the LP
solution is fractional, and the-r switch was specified, this callback generates a
postscript plot of the node’s LP relaxation.

14 3 CALLABLE LIBRARY FUNCTIONS

3 Callable Library Functions

3.1 Application programming interface

All declarations needed to use the GeoSteiner library in an application are defined
in a single include file calledgeosteiner.h. All identifiers#define’d in the
header file begin with the prefix “GST ”. All structure or union tags and typedefs
begin with the prefix “gst ”. All functions provided by the library begin with the
prefix “gst ”.

All GeoSteiner library functions reside in a single library. On most systems the
name will belibgeosteiner.a and linking is done with-lgeosteiner.
A shared library is also possible on some systems. If GeoSteiner has been config-
ured to use CPLEX as its LP-solver, then the CPLEX callable library must also
be linked with the application program.

3.2 Design of library

The GeoSteiner library is designed to be completely re-entrant so that multiple
problems can be solved serially or in a round-robin fashion.The current imple-
mentation might not yet completely satisfy this goal — especially concerning the
various LP-solver interfaces and the way GeoSteiner interacts with them. We hope
to eventually make the library fully thread-safe so that multiple problems can be
solved in parallel within a single process address space on amulti-processor sys-
tem. However, this ideal is not yet supported in the current version.

All output generated by the library (i.e., text that was written to stdout or stderr
by previous versions of GeoSteiner) is now user-controllable. Various types of
output have parameters that enable/disable their generation. This is achieved using
so-called “channels” described in Section 3.12. By default, library routines are
completely “quiet”.

The library does not use any signals nor does it establish anysignal handlers.
These would be potential points of contention with applications that use the li-
brary. Instead, all asynchronous requests to alter or aborta GeoSteiner compu-
tation (e.g., to abort the solution process, force branching in lieu of constraint
generation, etc.) are delivered by a single routine that is designed to be safe

3.3 Library objects 15

when called from a user-defined signal handler (see the description of the function
gst deliver signals()on page 139 for more information).

3.3 Library objects

3.3.1 GeoSteiner environment

The GeoSteiner environment encapsulates licensing information and platform-
specific data. If CPLEX is used as LP solver, the CPLEX environment is stored
here.

The environment is a singleglobal variable. No explicit user references to the
environment are possible, but the environmentmust be initialized by calling the
gst open geosteiner()function (see Section 3.4).

3.3.2 Parameter set

A parameter set holds values for all parameters used by the library. In order to
change one or more parameters, the user creates a new parameter set and modifies
the parameter(s) in this set. A pointer to the parameter set (typegst param ptr)
is then passed to all functions for which these parameter settings should have ef-
fect. Whenever a GeoSteiner function accepts an argument oftypegst param ptr,
the user may pass a NULL pointer in which case the GeoSteiner library assumes
default settings for all parameter values.

Parameter setting and querying functions are described in Section 3.6, while the
individual parameters are described in Appendix A.

3.3.3 Problem instance

The problem instance object is ahypergraph that can be decorated with a vari-
ety of additional (and optional) data (see Section 3.9). By attaching information
globally to the hypergraph, and to its vertices and edges, the problem to be solved
becomes well-defined. In general we would like to construct atree in the hyper-
graph. Problem instance objects have typegst hg ptr.

16 3 CALLABLE LIBRARY FUNCTIONS

Problem Solution State
gst solver ptr

Problem Instance
gst hg ptr

Parameter Set
gst param ptr

�
�

�
�

��	

@
@

@
@

@@R

Figure 6: Problem solution state references a problem instance and a parameter
set.

3.3.4 Problem solution state

The problem solution state object represents the “state” ofsome solution pro-
cess for a given problem instance (see Section 3.11). The object can contain
zero or more feasible (though not necessarily optimal) solutions to the problem.
For a given problem instance, several problem solution state objects may be cre-
ated. A problem solution state object refers to both a problem instance being
solved and a parameter object (from which all necessary parameter values are
obtained), as illustrated in Figure 6. The problem solutionstate object has type
gst solver ptr.

3.3.5 Auxiliary objects

In addition to the four object classes described above, GeoSteiner uses objects
for handling metrics, property lists, messages, and scaling information. A short
introduction to these auxiliary objects is given in this section.

Metric A metric object identifies the method for computing distances between
pairs of points. A metric object has typegst metric ptr, and can be passed as

3.3 Library objects 17

an argument to some of the functions in the callable library.For more information,
see the examples given in Section 2.2, and the descriptions of the metric functions
in Section 3.7.

Property List A property list contains auxiliary information about problem in-
stances and solution state objects, e.g. the CPU time for FSTgeneration (problem
instance property) and the current lower bound in the MSTHG solver (solution
state property). Property lists have typegst proplist ptr, and a property is
known by its property identification number (see Section 3.8).

Channel All output messages from GeoSteiner are passed through user-controllable
channels. A given channel may write its output to more than one output (screen/files).
Channels have typegst channel ptr and are described in Section 3.12.

Scaling Information A set of points may have associated scaling information,
that is, information about how the internal representation(double floating point
values) should be scaled back to the original point coordinates. This is done in or-
der to improve the numerical precision of GeoSteiner. Scaling information objects
have typegst scale info ptr and are described in Section 3.13.

18 3 CALLABLE LIBRARY FUNCTIONS

3.4 Opening and closing GeoSteiner environment

The GeoSteiner environment encapsulates licensing information and platform-
specific data. If CPLEX is used as LP solver, the CPLEX environment is stored
in the GeoSteiner environment.

The environment is a singleglobal variable. No explicit user references to the
environment are possible, but the environmentmust be initialized by calling the
gst open geosteiner()function before any other library functions can be invoked.

In the reminder of this section, we present each of the functions in the library
related to the GeoSteiner environment.

3.4 Opening and closing GeoSteiner environment 19

gst open geosteiner

GeoSteiner can be in two major statesopen or closed. The initial state is always
closed. This routine transitions GeoSteiner from theclosed state to theopen state
by initializing the GeoSteiner environment. No other GeoSteiner library function
may be called when GeoSteiner isclosed. In a multi-threaded environment, it is
the application’s responsibility to ensure that no calls toother GeoSteiner library
functions are either pending or initiated until GeoSteineris in theopen state —
which begins as soon as this routine returns with a status code of zero.

Note that the function doesnot open the LP solver (e.g., CPLEX). This is done
automatically the first time the LP solver environment is accessed; however, it
can also be done explicitly using thegst open lpsolver() function. An existing
CPLEX environment can also be attached to the GeoSteiner environment. See
gst attach cplex(); this is only relevant for CPLEX versions of the library.

int gst_open_geosteiner (void);

Returns status code (which is zero if GeoSteiner was successfully opened).

Example:

if (gst_open_geosteiner()) {
printf("GeoSteiner was not opened successfully.\n");
exit(1);

}

20 3 CALLABLE LIBRARY FUNCTIONS

gst close geosteiner

Transition GeoSteiner from theopen to theclosed state. Conceptually, GeoSteiner
enters theclosed state the very instant this routine is called. In a multi-threaded
environment, it is the application’s responsibility to ensure that no calls to other
GeoSteiner library functions are pending at the time this routine is invoked.

int gst_close_geosteiner (void);

Returns error code (which is zero if GeoSteiner was successfully closed).

Example:

if (gst_close_geosteiner()) {
printf("GeoSteiner was not closed successfully.\n");
exit(1);

}

3.4 Opening and closing GeoSteiner environment 21

gst version string

Return GeoSteiner version number as a character string.

const char * gst_version_string (void);

Returns null-terminated string giving the GeoSteiner version number.

Example:

printf ("This is GeoSteiner version %s\n", gst_version_string());

22 3 CALLABLE LIBRARY FUNCTIONS

gst version

Return GeoSteiner version number as an integer with the following decimal in-
terpretation: XXXYYYZZZ, where XXX is the major version, YYY is the minor
version and ZZZ is the patch-level.

int gst_version (void);

Returns integer representing the version number.

Example:

int version = gst_version();
printf ("This is GeoSteiner version %d.%d.%d\n",

(version / 1000000),
(version / 1000) % 1000,
(version % 1000));

3.4 Opening and closing GeoSteiner environment 23

gst open lpsolver

Initialize LP solver (e.g., CPLEX) environment. It is not necessary to open the
LP solver explicitly, since this is done automatically the first time the LP solver is
needed. However, it might be advantageous to ensure that theLP solver has been
successfully opened and is available for use before starting a long run.

int gst_open_lpsolver (void);

Returns value zero if the LP solver was opened successfully or already was open.

Example:

if (gst_open_geosteiner()) {
printf("GeoSteiner was not opened successfully.\n");
exit(1);

}
if (gst_open_lpsolver()) {

printf("LP solver was not initialized successfully.\n");
exit(1);

}
/* At this point both GeoSteiner and the LP solver are opened... */

24 3 CALLABLE LIBRARY FUNCTIONS

gst close lpsolver

Close LP solver environment. In the case where the LP solver wasattached, e.g.,
using gst attach cplex(), then this routine detaches but doesnot close the LP
solver.

int gst_close_lpsolver (void);

Returns value zero if the solver was closed successfully or already was closed.

Example:

if (gst_close_geosteiner()) {
printf("LP solver could not be closed successfully.\n");
exit(1);

}

3.4 Opening and closing GeoSteiner environment 25

gst lpsolver version string

Return the name of the configured LP solver and its version number as a string.

const char* gst_lpsolver_version_string (void);

Returns zero-terminated string giving the LP solver name and version.

Example:

printf ("GeoSteiner used LP solver %s\n",
gst_lpsolver_version_string());

26 3 CALLABLE LIBRARY FUNCTIONS

gst attach cplex

Provided only for CPLEX versions of the library. Attach an existing CPLEX
environment to GeoSteiner. Certain applications may wish to use CPLEX before,
during and/or after they use GeoSteiner. This function permits such applications
to use an existing CPLEX environment rather than letting GeoSteiner attempt to
open CPLEX itself (which would fail if CPLEX were already open). A non-
NULL CPLEX environment that was attached usinggst attach cplex() will not
be closed whengst close geosteiner()is called.

void gst_attach_cplex (struct cpxenv* envp);

envp CPLEX environment to be attached.

No return value.

Example:

/* Assume that envp is an existing CPLEX environment...*/

/* Open GeoSteiner */
if (gst_open_geosteiner()) {

printf("GeoSteiner was not opened successfully.\n");
exit(1);

}

/* Attach existing CPLEX environment */
gst_attach_cplex(envp);

/* Now envp is the CPLEX environment used by GeoSteiner... */

/* Detach CPLEX environment and close GeoSteiner */
gst_detach_cplex();
gst_close_geosteiner();

3.4 Opening and closing GeoSteiner environment 27

gst detach cplex

Provided only for CPLEX versions of the library. Detach and return a previously
attached CPLEX environment. Does not close the CPLEX environment.

struct cpxenv* gst_detach_cplex ();

Return value isNULL if no CPLEX environment is currently attached.

An example is given with the documentation ofgst attach cplex() on page 26.

28 3 CALLABLE LIBRARY FUNCTIONS

3.5 High-level optimization functions

The high-level functions give the user easy access to the basic algorithms in the
library. There are two types of functions: Firstly, there are functions that solve
Steiner tree problems in the plane by passing a set of point coordinates; secondly,
the MSTHG problem can be solved by giving a description of thehypergraph
instance.

All functions have a parameter set as argument. This parameter set can be cre-
ated and modified using the functions described in Section 3.6. However, default
parameters are used for all parameters if aNULL pointer is passed as parameter
set.

3.5 High-level optimization functions 29

gst smt

Given a set of points (or terminals) in the plane, construct an SMT for the points.
The metric used for the SMT construction must be specified. (Dedicated func-
tions for specific metrics are given on the following pages.)The length of the
constructed SMT, the Steiner points and the list of line segments in the SMT are
returned.

Any of the output parameters may be set toNULL if the corresponding output is
not needed. It is the responsibility of the user to allocate sufficient memory for
the output arrays.

int gst_smt (int nterms,
double* terms,
double* length,
int* nsps,
double* sps,
int* nedges,
int* edges,
int* status,
gst_metric_ptr metric,
gst_param_ptr param);

nterms Number of points (or terminals).
terms Input point coordinates (x1, y1, x2, y2, . . .).
length Length of computed SMT.
nsps Number of Steiner points.
sps Steiner point coordinates.

edges
Edges of SMT (terminals have index 0 tonterms-1
while Steiner points have indexnterms and up).

status Solution status code (see page 114).
metric Metric object (see Section 3.7).
param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise. See Figure 3
on page 9 or the example filedemo2.c for an example of how to usegst smt().

30 3 CALLABLE LIBRARY FUNCTIONS

gst esmt

Given a set of points (or terminals) in the plane, construct an Euclidean SMT for
the points. The length of the constructed SMT, the Steiner points and the list of
line segments in the SMT are returned.

Any of the output parameters may be set toNULL if the corresponding output is
not needed. It is the responsibility of the user to allocate sufficient memory for
the output arrays.

int gst_esmt (int nterms,
double* terms,
double* length,
int* nsps,
double* sps,
int* nedges,
int* edges,
int* status,
gst_param_ptr param);

nterms Number of points (or terminals).
terms Input point coordinates (x1, y1, x2, y2, . . .).
length Length of computed SMT.
nsps Number of Steiner points.
sps Steiner point coordinates.

edges
Edges of SMT (terminals have index 0 tonterms-1
while Steiner points have indexnterms and up).

status Solution status code (see page 114).
param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise.

An example is given in Section 2.1.

3.5 High-level optimization functions 31

gst rsmt

Given a set of points (or terminals) in the plane, construct arectilinear SMT for
the points. The length of the constructed SMT, the Steiner points and the list of
line segments in the SMT are returned.

Any of the output parameters may be set toNULL if the corresponding output is
not needed. It is the responsibility of the user to allocate sufficient memory for
the output arrays.

int gst_rsmt (int nterms,
double* terms,
double* length,
int* nsps,
double* sps,
int* nedges,
int* edges,
int* status,
gst_param_ptr param);

nterms Number of points (or terminals).
terms Input point coordinates (x1, y1, x2, y2, . . .).
length Length of computed SMT.
nsps Number of Steiner points.
sps Steiner point coordinates.

edges
Edges of SMT (terminals have index 0 tonterms-1
while Steiner points have indexnterms and up).

status Solution status code (see page 114).
param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise.

An example is given in Section 2.1.

32 3 CALLABLE LIBRARY FUNCTIONS

gst osmt

Given a set of points (or terminals) in the plane, construct an octilinear SMT for
the points. The length of the constructed SMT, the Steiner points and the list of
line segments in the SMT are returned.

Any of the output parameters may be set toNULL if the corresponding output is
not needed. It is the responsibility of the user to allocate sufficient memory for
the output arrays.

int gst_osmt (int nterms,
double* terms,
double* length,
int* nsps,
double* sps,
int* nedges,
int* edges,
int* status,
gst_param_ptr param);

nterms Number of points (or terminals).
terms Input point coordinates (x1, y1, x2, y2, . . .).
length Length of computed SMT.
nsps Number of Steiner points.
sps Steiner point coordinates.

edges
Edges of SMT (terminals have indices 0 tonterms-
1 while Steiner points have indicesnterms and up).

status Solution status code (see page 114).
param Parameter set (NULL=default parameters).

Returns value zero if an SMT was computed and non-zero otherwise.

An example is given in Section 2.1.

3.5 High-level optimization functions 33

gst hgmst

Given an edge-weighted hypergraph, construct a minimum spanning tree (MST)
in this hypergraph.

Any of the output parameters may be set toNULL if the corresponding output is
not needed. It is the responsibility of the user to allocate sufficient memory for
the output arrays.

int gst_hgmst (int nverts,
int nedges,
int* edge_sizes,
int* edges,
double* weights,
double* length,
int* nmstedges,
int* mstedges,
int* status,
gst_param_ptr param);

nverts Number of vertices in the hypergraph.
nedges Number of edges in the hypergraph.
edge sizes Array giving number of vertices in each edge
edges Array of vertices contained in each edge.
weights Array of edge weights.
nmstedges Number of edges in the minimum spanning tree.

mstedges Array of edges contained in the minimum spanning
tree.

status Solution status code (see page 114).
param Parameter set (NULL=default parameters).

Returns value zero if an MST was computed and non-zero otherwise.

34 3 CALLABLE LIBRARY FUNCTIONS

Example:

static int edge_sizes [] = {2, 2, 2, 3};
static int edges [] = {0, 1, /* edge 0 */

0, 2, /* edge 1 */
1, 2, /* edge 2 */
0, 1, 2}; /* edge 3 */

static double weights [] = {3.0, 2.0, 1.0, 4.0};
double length;
int code, i, nmstedges, mstedges [2];

code = gst_hgmst (3, /* nverts */
4, /* nedges */
edge_sizes,
edges,
weights,
&length,
&nmstedges,
mstedges,
NULL, /* ignore status */
NULL); /* use default parameters */

if (code != 0) {
fprintf (stderr, "Return code = %d\n", code);
exit (1);

}
printf ("Optimal solution = %g: ", length);
for (i = 0; i < nmstedges; i++) {

printf (" %d", mstedges [i]);
}
printf ("\n");

3.6 Parameter setting and querying functions 35

3.6 Parameter setting and querying functions

A parameter set is an object that holds values for all parameters in the library. The
library provides the following operations on parameter sets:

• create a parameter set having “default” values,

• change parameter settings in a parameter set,

• query the current, default, minimum and maximum values of any parameter,

• query the type of a parameter,

• copy an existing parameter set,

• free a parameter set.

Parameter sets have typegst param ptr. Various library functions require a
parameter set to be provided as an argument. In all such casesit is valid for the
caller to pass aNULL pointer, in which case default settings will be used for all
parameters.

Each supported parameter has a specific type. When querying the type of a pa-
rameter, the library responds with an integer value that denotes the corresponding
parameter type. The parameter types supported, together with the integer values
that denote them are as follows:

Type Macro Name Value
int GST PARAMTYPE INTEGER 1
double GST PARAMTYPE DOUBLE 2
char* GST PARAMTYPE STRING 3
gst channel ptr GST PARAMTYPE CHANNEL 4

Externally each parameter has a unique number defined by aGST PARAM macro
(see Appendix A). This macro is used as an argument to the parameter get/set
functions. Note that there are distinct parameter get/set functions for each param-
eter type.

36 3 CALLABLE LIBRARY FUNCTIONS

gst create param

Create a new parameter set with default parameters.

gst_param_ptr gst_create_param (int* status);

status
Status code (zero if operation was successful and non-
zero otherwise).

Returns new parameter set with default parameters.

Example:

int status;

/* Create a default parameter set */
gst_param_ptr myparam = gst_create_param(&status);

/* Change one parameter to a non-default value */
gst_set_int_param(myparam, GST_MAX_FST_SIZE, 4);

/* Use the new parameter set...*/

3.6 Parameter setting and querying functions 37

gst copy param

Copy all parameter values from one parameter set into another.

int gst_copy_param (gst_param_ptr dst,
gst_param_ptr src);

dst
Parameter set that should be overwritten. IfNULL,
this routine does nothing.

src
Parameter set that should be copied. ANULL pointer
is handled as the default set of parameters.

Returns zero if the parameter set was copied successfully.

Example:

/* Assume that param1 is an existing parameter set */

gst_param_ptr param2 = gst_create_param(NULL);
if (gst_copy_param (param2, param1)) {

printf("Could not copy parameter set.\n");
exit(1);

}

/* At this point param2 is a copy of param1 */

38 3 CALLABLE LIBRARY FUNCTIONS

gst free param

Free parameter set. Freeing a parameter set that is still referenced by any other
GeoSteiner object (e.g., by a problem solution state object) produces undefined
behavior.

int gst_free_param (gst_param_ptr param);

param
Parameter set that should be freed. IfNULL, this rou-
tine does nothing.

Returns zero if the parameter set was freed successfully.

Example:

/* Free existing parameter set myparam */
gst_free_param(myparam);

3.6 Parameter setting and querying functions 39

gst set dbl param

Change value of a specified double parameter in a given parameter set.

int gst_set_dbl_param (gst_param_ptr param,
int whichparam,
double newvalue);

param Parameter set.

whichparam
Parameter ID of double parameter to modify
(GST PARAM macro).

newvalue New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

/* Set a CPU time limit of 0.5 seconds for parameter set myparam */
gst_set_dbl_param(myparam, GST_PARAM_CPU_LIMIT, 0.5);

40 3 CALLABLE LIBRARY FUNCTIONS

gst get dbl param

Get current value of a specified double parameter from a givenparameter set.

int gst_get_dbl_param (gst_param_ptr param,
int whichparam,
double* value);

param Parameter set.

whichparam
Parameter ID of double parameter to access
(GST PARAM macro).

value
Current value of parameter (pointer to double vari-
able).

Returns zero if the parameter was accessed successfully.

Example:

double cpulimit;
gst_get_dbl_param(myparam, GST_PARAM_CPU_LIMIT, &cpulimit);
printf ("The current CPU time limit is %.2f.\n", cpulimit);

3.6 Parameter setting and querying functions 41

gst query dbl param

Query properties of a specified double parameter in a given parameter set.

int gst_query_dbl_param (gst_param_ptr param,
int whichparam,
double* current_value,
double* default_value,
double* min_value,
double* max_value);

param Parameter set.

whichparam
Parameter ID of double parameter to query
(GST PARAM macro).

current value
Current value of parameter (pointer to double vari-
able).

default value
Default value of parameter (pointer to double vari-
able).

min value
Minimum value of parameter (pointer to double vari-
able).

max value
Maximum value of parameter (pointer to double vari-
able).

Each of the last four arguments may beNULL if the corresponding value is not
needed.

Returns zero if the parameter was queried successfully.

42 3 CALLABLE LIBRARY FUNCTIONS

Example:

/* myparam is an existing parameter set */
double curval, defval, minval, maxval;
if (gst_query_dbl_param (myparam,

GST_PARAM_GAP_TARGET,
&curval,
&defval,
&minval,
&maxval) != 0) {

fprintf (stderr, "Parameter query failed.\n");
exit (1);

}
printf ("Gap target: current=%g, default=%g, min=%g, max=%g.\n",

curval, defval, minval, maxval);

3.6 Parameter setting and querying functions 43

gst set int param

Change value of a specified integer parameter in a given parameter set.

int gst_set_int_param (gst_param_ptr param,
int whichparam,
int newvalue);

param Parameter set.

whichparam
Parameter ID of integer parameter to modify
(GST PARAM macro).

newvalue New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

/* Collect the 10 best solutions. */
gst_set_int_param (myparam, GST_PARAM_NUM_FEASIBLE_SOLUTIONS, 10);

44 3 CALLABLE LIBRARY FUNCTIONS

gst get int param

Get current value of a specified integer parameter from a given parameter set.

int gst_get_int_param (gst_param_ptr param,
int whichparam,
int* value);

param Parameter set.

whichparam
Parameter ID of integer parameter to access
(GST PARAM macro).

value
Current value of parameter (pointer to integer vari-
able).

Returns zero if the parameter was accessed successfully.

Example:

int vlimit;
gst_get_int_param(myparam, GST_PARAM_BACKTRACK_MAX_VERTS, &vlimit);
printf ("The current backtrack search vertex limit is %d.\n", vlimit);

3.6 Parameter setting and querying functions 45

gst query int param

Query properties of a specified integer parameter in a given parameter set.

int gst_query_int_param (gst_param_ptr param,
int whichparam,
int* current_value,
int* default_value,
int* min_value,
int* max_value);

param Parameter set.

whichparam
Parameter ID of integer parameter to query
(GST PARAM macro).

current value
Current value of parameter (pointer to integer vari-
able).

default value
Default value of parameter (pointer to integer vari-
able).

min value
Minimum value of parameter (pointer to integer vari-
able).

max value
Maximum value of parameter (pointer to integer vari-
able).

Each of the last four arguments may beNULL if the corresponding value is not
needed.

Returns zero if the parameter was queried successfully.

46 3 CALLABLE LIBRARY FUNCTIONS

Example:

/* param is an existing parameter set */
int curval, defval, minval, maxval;
if (gst_query_int_param (param,

GST_PARAM_BRANCH_VAR_POLICY,
&curval,
&defval,
&minval,
&maxval) != 0) {

fprintf (stderr, "Parameter query failed.\n");
exit (1);

}
printf ("Branch variable policy: "

"current=%g, default=%g, min=%g, max=%g.\n",
curval, defval, minval, maxval);

3.6 Parameter setting and querying functions 47

gst set str param

Change value of a specified string parameter in a given parameter set.

int gst_set_str_param (gst_param_ptr param,
int whichparam,
const char* str);

param Parameter set.

whichparam
Parameter ID of string parameter to access
(GST PARAM macro).

chan New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

/* Establish a name for my problem instance. */
#define MY_INSTANCE_NAME_PARAM -123
int code;
code = gst_set_str_param (myparam,

MY_INSTANCE_NAME_PARAM,
"Bowser");

if (code != 0) {
fprintf (stderr, "gst_set_str_param failed.\n");
exit (1);

}

48 3 CALLABLE LIBRARY FUNCTIONS

gst get str param

Get current value of a specified string parameter in a given parameter set.

int gst_get_str_param (gst_param_ptr param,
int whichparam,
int* length,
char* str);

param Parameter set.

whichparam
Parameter ID of string parameter to access
(GST PARAM macro).

length

The length of the string is written to this integer (un-
less it is aNULL pointer). A length of-1 indicates
that the parameter has the valueNULL, which is dis-
tinct from a string of length zero.

str
The current value for this parameter is copied to the
string provided here (unless it is aNULL pointer).

Returns zero if the parameter was accessed successfully.

3.6 Parameter setting and querying functions 49

Example:

#define MY_INSTANCE_NAME_PARAM -123
int code, length;
char* value;

/* First, get length of the string. */
gst_set_str_param (myparam,

MY_INSTANCE_NAME_PARAM,
&length,
NULL);

value = NULL;
if (length >= 0) {

/* Allocate buffer to receive string value. */
value = (char *) malloc (length + 1);
code = gst_set_str_param (myparam,

MY_INSTANCE_NAME_PARAM,
NULL,
value);

}
printf ("My problem instance name = %s\n",

(value == NULL) ? "<null>" : value);
if (value != NULL) {

free (value);
}

50 3 CALLABLE LIBRARY FUNCTIONS

gst set chn param

Change value of a specified channel parameter in a given parameter set.

int gst_set_chn_param (gst_param_ptr param,
int whichparam,
gst_channel_ptr chan);

param Parameter set.

whichparam
Parameter ID of a channel parameter to modify
(GST PARAM macro).

chan New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

int code;
gst_channel_ptr chan;

/* Create a channel directed to stdout. */
chan = gst_create_channel (NULL, NULL);
gst_channel_add_file (chan, stdout, NULL);

/* Direct solver trace info to stdout. */
code = gst_set_chn_param (myparam, GST_PARAM_PRINT_SOLVE_TRACE, chan);
if (code != 0) {

fprintf (stderr, "gst_set_chn_param failed.\n");
exit (1);

}

3.6 Parameter setting and querying functions 51

gst get chn param

Get current value of a specified channel parameter from a given parameter set.

int gst_get_chn_param (gst_param_ptr param,
int whichparam,
gst_channel_ptr* chan);

param Parameter set.

whichparam
Parameter ID of channel parameter to access
(GST PARAM macro).

chan
Current value for this parameter (pointer to channel
variable).

Returns zero if the parameter was accessed successfully.

Example:

int code;
gst_channel_ptr chan;

/* Get current solver trace channel. */
code = gst_get_chn_param (myparam,

GST_PARAM_PRINT_SOLVE_TRACE,
&chan);

if (code != 0) {
fprintf (stderr, "gst_get_chn_param failed.\n");
exit (1);

}
if (chan != NULL) {

/* Turn off the trace and destroy the channel. */
gst_set_chn_param (myparam,

GST_PARAM_PRINT_SOLVE_TRACE,
NULL);

gst_free_channel (chan);
}

52 3 CALLABLE LIBRARY FUNCTIONS

gst get param id

Translate a parameter name into the corresponding parameter id.

int gst_get_param_id (const char* param_name,
int* param_id);

param name
The name of a parameter (e.g., ”maxfst size”, or
”GST PARAM MAX FST SIZE”).

param id

Address of an integer to store the parameter ID corre-
sponding to the given parameter name. This will be
-1 for unknown or unrecognizable parameter names.
Theparam id argument can beNULL, if the actual
parameter ID value is not required.

Returns zero if theparam name was recognized and the parameter ID was suc-
cessfully found.

Example:

int parmid;
if (gst_get_param_id ("save_format", &parmid) != 0) {

fprintf (stderr, "gst_get_param_id failed.\n");
exit (1);

}
printf ("Parameter ID: %d\n", parmid);

3.6 Parameter setting and querying functions 53

gst get param type

Get the type of a specified parameter id.

int gst_get_param_type (int whichparam,
int* type);

whichparam Parameter ID to query (GST PARAM macro).

type
This integer is set to the type of the parameter. The
parameter types and their encodings as integer values
are given in the table on page 35.

Returns zero if the type was found successfully.

Example:

char* str;
int parmtype;
if (gst_get_param_type (GST_PARAM_SAVE_FORMAT, &parmtype) != 0) {

fprintf (stderr, "gst_get_param_type failed.\n");
exit (1);

}
switch (parmtype) {

case GST_PARAMTYPE_INTEGER: str = "int"; break;
case GST_PARAMTYPE_DOUBLE: str = "double"; break;
case GST_PARAMTYPE_STRING: str = "string"; break;
case GST_PARAMTYPE_CHANNEL: str = "channel"; break;
default: str = "unknown"; break;

}
printf ("Parameter is of type %s.\n", str);

54 3 CALLABLE LIBRARY FUNCTIONS

gst set param

Set the value of a named parameter from the given string. Thisroutine permits
the value of any integer, double or string parameter to be setto the value given in
text string form. This is a convenient way to set parameters from command line
arguments.

int gst_set_param (gst_param_ptr param,
const char* name,
const char* value);

param Parameter set.
name Name of parameter to set (see Appendix A).
value Text string containing data value to set.

Example:

int main (int argc, char **argv)
{
int i, j;
char * ap;
gst_channel_ptr myparm;

gst_open_geosteiner (NULL);
myparam = gst_create_param (NULL);

/* Parse arguments such as: -ZBRANCH_VAR_POLICY 3 */
for (i = 1; i < argc; i++) {

ap = argv [i];
if ((ap[0] != ’-’) || (ap[1] != ’Z’)) usage ();
j = gst_set_param (myparam, &ap[2], argv [i+1]);
if (j != 0) usage ();
++i;

}
/* Parameters are now set... */

}

3.7 Metric setting and querying functions 55

3.7 Metric setting and querying functions

The support of different metrics in the GeoSteiner library is primarily handled by
metric objects. Some functions in the library use these metric objects automat-
ically, e.g.,gst esmt(), while others require one to specify a metric object, e.g.,
gst smt(). The metric objects provide a simple way to make general applications
support several different metrics. An example of this can befound in the demo
programdemo2.c which is the code for a small program supporting all metrics
supported by GeoSteiner.

Two Lp-metrics,L1 (rectilinear) andL2 (Euclidean), are supported. Also, all
uniform metrics — so-calledλ-metrics — are supported. The latter are metrics
where only a limited numberλ ≥ 2 of equally-spaced orientations are allowed for
the edges in a solution. Forλ = 2 this is identical to the rectilinear metric,L1.

When a metric object has been created, the distance between two points in the
metric can be obtained by callinggst distance(). This is especially useful for the
λ-metrics for which efficient calculation is non-trivial.

The following macros are used for identifying the supportedmetrics:

Metric Type Macro Name Value
None GST METRIC NONE 0
Lp GST METRIC L 1
Uniform GST METRIC UNIFORM 2

56 3 CALLABLE LIBRARY FUNCTIONS

gst create metric

A metric is defined by a type and a parameter. For theLp-metric this parameterp
must be either 1 or 2, and for theλ-metric we must haveλ ≥ 2.

Note that even though theL1-metric and theλ-metric with parameter 2 are the
same (rectilinear metric), you cannot expect them to give exactly the same results
when used to solve Steiner problems. The first one will resultin the use of a
dedicated FST generator for the rectilinear problem and thelatter will result in the
use of a general FST generator forλ-metrics. If you are aiming for speed then use
theL1-metric.

gst_metric_ptr gst_create_metric (int type,
int parameter,
int* status);

type
Metric type (see macro values in the table on
page 55).

parameter Metric parameter.

status
Status code (zero if operation was successful and non-
zero otherwise).

Returns new metric object.

Example:

/* Creating a Euclidean metric object */
gst_metric_ptr metric;
metric = gst_create_metric (GST_METRIC_L, 2, NULL);

/* And use it as a parameter to gst_smt */
gst_smt (nterms, terms, &length, NULL, NULL, NULL, NULL, NULL,

metric, NULL);

3.7 Metric setting and querying functions 57

gst free metric

Free an existing metric object. Freeing a metric object thatis still referenced
by any other GeoSteiner object (e.g., a hypergraph object) produces undefined
behavior.

int gst_free_metric (gst_metric_ptr metric);

metric Metric object. Does nothing ifNULL.

Returns zero if operation was successful.

Example:

/* Free parameter object mymetric */
gst_free_metric (mymetric);

58 3 CALLABLE LIBRARY FUNCTIONS

gst copy metric

Copy attributes from one metric object to another.

int gst_copy_metric (gst_metric_ptr dst,
gst_metric_ptr src);

dst Metric object that should be overwritten.

src
Metric that should be copied. ANULL pointer is
considered as a ”None” metric type (see table on
page 55).

Returns zero if metric object was copied.

Example:

gst_metric_ptr newmetric;

newmetric = gst_create_metric (GST_METRIC_NONE, 0);

gst_copy_metric (newmetric, oldmetric);

/* newmetric is now the same metric as oldmetric. */

3.7 Metric setting and querying functions 59

gst distance

Compute the distance between two points under a given metric.

double gst_distance (gst_metric_ptr metric,
double x1,
double y1,
double x2,
double y2);

metric Metric object.
x1 X-coordinate for first point.
y1 Y-coordinate for first point.
x2 X-coordinate for second point.
y2 Y-coordinate for second point.

Returns the distance. Returned value is always zero if metric type is ”None”.

Example:

/* Assume that mymetric is a metric object. */
/* Compute distance between points (0,0) and (1,1). */
double d;
d = gst_distance (mymetric, 0.0, 0.0, 1.0, 1.0);

60 3 CALLABLE LIBRARY FUNCTIONS

gst get metric info

Get the information about a metric object.

int gst_get_metric_info (gst_metric_ptr metric,
int* type,
int* parameter);

metric Metric object.

type
A pointer to an integer in which to place the metric
type. See the possible types in the table on page 55.

parameter
An optional pointer to an integer in which to place the
metric parameter. See the possible parameters in the
description ofgst create metric().

Returns zero if operation was successful. Either of the lasttwo arguments may be
NULL if the corresponding value is not needed.

Example:

/* Let mymetric be a metric object */
int type, parameter;
gst_get_metric_info (mymetric, &type, ¶meter);
switch (type) {

case GST_METRIC_NONE:
printf ("Metric is None.\n");
break;

case GST_METRIC_L:
printf ("Metric is L%d.\n", parameter);
break;

case GST_METRIC_UNIFORM:
printf ("Metric is Uniform %d.\n", parameter);
break;

default:
printf ("Metric is unknown!\n");

}

3.8 Property list setting and querying functions 61

3.8 Property list setting and querying functions

Property lists can be used to hold values which are rarely updated (the data struc-
ture holding the informationcannot be queried/updated in constant time). The
following basic operations are provided by the library:

• create an empty property list,

• set/create a value in a property list,

• delete a value from a property list,

• get a value in a property list,

• query the type of a property,

• copy a property list,

• free a property list (including its content).

A property list has typegst proplist ptr and a property is known by its
property ID (a macro name which expands to a signed integer).

The main purpose of property lists is to make extra information about the solution
process available to the user through a simple interface. Any property ID with a
value larger than or equal to zero is reserved by the library.Negative values can be
freely used by the user. The property ID values (and their macro names) currently
in use can be found in Appendices B and C.

Note that there are distinct property get/set functions fordifferent property types.
The type of a given property — which is an integer — can be queried. The sup-
ported property types, together with the integer values that denote them are as
follows:

Type Macro Name Value
int GST PROPTYPE INTEGER 1
double GST PROPTYPE DOUBLE 2
char* GST PROPTYPE STRING 3

62 3 CALLABLE LIBRARY FUNCTIONS

gst create proplist

Create a new empty property list.

gst_proplist_ptr
gst_create_proplist (int* status);

status
Status code (zero if operation was successful and non-
zero otherwise). May beNULL if value is not needed.

Returns new property list.

Example:

gst_proplist_ptr plist;
int status;
plist = gst_create_proplist (&status);
if (status != 0) {

fprintf (stderr, "Unable to create property list.\n");
exit (1);

}
gst_set_int_property (plist, GST_PROP_SOLVER_ROOT_OPTIMAL, 1);

3.8 Property list setting and querying functions 63

gst free proplist

Free an existing property list. Freeing a property list thatis still referenced by
existing GeoSteiner objects (e.g., hypergraphs and solvers) results in undefined
behavior. In most cases it is an error to free a property list that was not obtained
via a call togst create proplist() .

int gst_free_proplist (gst_proplist_ptr plist);

plist
A property list to free. IfNULL, this routine does
nothing.

Returns a status code (zero if operation was successful and non-zero otherwise).

Example:

gst_proplist_ptr plist;
plist = gst_create_proplist (NULL);

/* Various operations on plist... */

gst_free_proplist (plist);

64 3 CALLABLE LIBRARY FUNCTIONS

gst copy proplist

Empty the destination property list and copy all propertiesinto it from the source
property list.

int gst_copy_proplist (gst_proplist_ptr dst,
gst_proplist_ptr src);

dst Property list that should be overwritten.

src
Property list that should be copied. ANULL pointer
is handled as an empty property list.

Returns zero if the property list was copied successfully.

Example:

/* We assume that H is a hypergraph... */
gst_proplist_ptr copy;

copy = gst_create_proplist (NULL);

if (gst_copy_proplist (copy, gst_get_hg_properties(H)) == 0) {
/* We have now created a copy of the property list for H */

}
else {

/* Something went wrong */
}

/* Use new copy of property list... */

/* Free copy */
gst_free_proplist (copy);

3.8 Property list setting and querying functions 65

gst get property type

Query the type of a given property.

int gst_get_property_type (gst_proplist_ptr plist,
int propid,
int* type);

plist An existing property list.
propid A property ID value.

type
Pointer to an integer which will be overwritten with
the type of the property.

Return a status code (zero if operation was successful and non-zero otherwise).

Example:

/* We assume that H is a hypergraph... */
int type;

if (gst_get_property_type (gst_get_hg_properties(H),
GST_PROP_HG_GENERATION_TIME,
&type) != 0) {

/* Something went wrong */
}
else {

switch (type) {
case GST_PROPTYPE_INTEGER: /* Property is an integer value */

break;
case GST_PROPTYPE_DOUBLE: /* Property is a floating point value */

break;
case GST_PROPTYPE_STRING: /* Property is a string value */

break;
default: /* Something went wrong */
}

}

66 3 CALLABLE LIBRARY FUNCTIONS

gst delete property

Remove any value that might be defined for the given property ID, regardless of
type.

int gst_delete_property (gst_proplist_ptr plist,
int propid);

plist Property list.
propid ID of property to delete.

Returns zero if the property was successfully deleted from the property list.
ReturnsGST ERR INVALID PROPERTY LIST if the property list itself is in-
valid.
ReturnsGST ERR PROPERTY NOT FOUND if no property having the given ID
exists.

Example:

/* We are given a property list plist */
#define MY_PROPERTY_ID -1000

gst_delete_property (plist, MY_PROPERTY_ID);

/* plist no longer has any value defined */
/* for property ID -1000. */

3.8 Property list setting and querying functions 67

gst get dbl property

Get the value of a specified double property from a given property list. The spec-
ified property must be of type double or an error is returned. ID values greater
than or equal to zero are reserved for GeoSteiner’s use. Negative ID values can be
freely used by user applications.

int gst_get_dbl_property (gst_proplist_ptr plist,
int propid,
double* value);

plist Property list.
propid ID of double property to retrieve.

value
Current value of property (pointer to double variable).
May beNULL if value is not needed.

Returns zero if the property was accessed successfully.
ReturnsGST ERR PROPERTY NOT FOUND if no property having the given ID
exists.
ReturnsGST ERR PROPERTY TYPE MISMATCH if the property exists but does
not have type double.

Example:

/* We are given a property list plist and a double value has
been set for the ID value GST_PROP_USER_MYVALUE */

#define GST_PROP_USER_MY_DBL_VALUE -1000

double value;
gst_get_dbl_property (plist,

GST_PROP_USER_MY_DBL_VALUE,
&value);

printf ("My_dbl_value is currently set at %.2f.\n", value);

68 3 CALLABLE LIBRARY FUNCTIONS

gst get int property

Get the value of a specified property from the given property list. The specified
property must be of type integer or an error is returned. ID values greater than or
equal to zero are reserved for GeoSteiner’s use. Negative IDvalues can be freely
used by user applications.

int gst_get_int_property (gst_proplist_ptr plist,
int propid,
int* value);

plist Property list.
propid ID of integer property to retrieve.

value
Current value of property (pointer to integer variable).
May beNULL if value is not needed.

Returns zero if the property was accessed successfully.
ReturnsGST ERR PROPERTY NOT FOUND if no property having the given ID
exists.
ReturnsGST ERR PROPERTY TYPE MISMATCH if the property exists but does
not have type integer.

Example:

/* We are given a property list plist and an integer value has
been set for the ID value GST_PROP_USER_MY_INT_VALUE */

#define GST_PROP_USER_MY_INT_VALUE -1001

int value;
gst_get_int_property (plist,

GST_PROP_USER_MY_INT_VALUE,
&value);

printf ("My_int_value is currently set at %d.\n", value);

3.8 Property list setting and querying functions 69

gst get str property

Get the value of a specified property from the given property list. The specified
property must be of type string or an error is returned. ID values greater than or
equal to zero are reserved for GeoSteiner’s use. Negative IDvalues can be freely
used by user applications.

int gst_get_str_property (gst_proplist_ptr plist,
int propid,
int* length,
char* str);

plist Property list.
propid ID of string property to retrieve.

length

The length of the string is written to this integer (un-
less it is aNULL pointer). The returned length does
not include the terminating null character. The re-
turned length is -1 if the property value is aNULL
pointer (which is distinct from a zero length string).

str
The current value for this parameter is copied into the
buffer provided here (unless it is aNULL pointer).

Returns zero if the property was accessed successfully.
ReturnsGST ERR PROPERTY NOT FOUND if no property having the given ID
exists.
ReturnsGST ERR PROPERTY TYPE MISMATCH if the property exists but does
not have type string.

70 3 CALLABLE LIBRARY FUNCTIONS

Example:

int code, length;
char* buf;
buf = NULL;
code = gst_get_str_property (plist, GST_PROP_HG_NAME,

&length, NULL);
if ((code == 0) && (length >= 0)) {

buf = (char *) malloc (length + 1);
gst_get_str_property (plist,

GST_PROP_HG_NAME,
NULL,
buf);

}
printf ("Hypergraph name is %s\n",

(buf == NULL) ? "<NULL>" : buf);
if (buf != NULL) free (buf);

3.8 Property list setting and querying functions 71

gst get properties

Retrieve all property IDs and their types from the given property list.

int gst_get_properties (gst_proplist_ptr plist,
int* count,
int* propids,
int* types);

plist Property list.

count
Number of properties in the givenplist (unless it is
aNULL pointer).

propids
Buffer to receive the property IDs of each property in
plist (unless it is aNULL pointer).

types
Buffer to receive the types of each property inplist
(unless it is aNULL pointer).

Returns zero if the properties were successfully retrieved.

Example:

int count;
int* propids;
int* types;
code = gst_get_properties (plist, &count, NULL, NULL);
if (code != 0) {

/* Something went wrong. */
exit (1);

}
propids = (int *) malloc (count * sizeof (int));
types = (int *) malloc (count * sizeof (int));
gst_get_properties (plist, NULL, propids, types);
for (i = 0; i < count; i++) {

printf ("Propid = %d, type = %d.\n",
propids [i], types [i]);

}
free (types);
free (propids);

72 3 CALLABLE LIBRARY FUNCTIONS

gst set dbl property

Change or create a specified property in the given property list. The property is
added to the list if not already present. If the property already exists, its type is
forced to be double. It islegal to do this with any property list.

int gst_set_dbl_property (gst_proplist_ptr plist,
int propid,
double value);

plist Property list.
propid ID of double property to create or modify.
newvalue New value for this property.

Returns zero if the property was set successfully.

Example:

/* Assume we are given a property list plist */
#define GST_PROP_USER_MY_DBL_VALUE -1000

gst_set_dbl_property (plist, GST_PROP_USER_MY_DBL_VALUE, 2.71828);

3.8 Property list setting and querying functions 73

gst set int property

Change or create a a specified property in the given property list. The property is
added to the list if not already present. If the property already exists, its type is
forced to be integer. It islegal to do this with any property list.

int gst_set_int_property (gst_proplist_ptr plist,
int propid,
int value);

plist Property list.
propid ID of integer property to create or modify.
newvalue New value for this property.

Returns zero if the property was set successfully.

Example:

/* Assume we are given a property list plist */
#define GST_PROP_USER_MY_INT_VALUE -1001

gst_set_int_property (plist, GST_PROP_USER_MY_INT_VALUE, 42);

74 3 CALLABLE LIBRARY FUNCTIONS

gst set str property

Change or create a specified property in the given property list. The property is
added to the list if not already present. If the property already exists, its type is
forced to be string. It islegal to do this with any property list.

int gst_set_str_property (gst_proplist_ptr plist,
int propid,
const char* value);

plist Property list.
propid ID of string property to create or modify.
newvalue New value for this property.

Returns zero if the property was set successfully.

Example:

/* Assume we are given a property list plist */
gst_set_str_property (plist, GST_PROP_HG_NAME, "Oobleck");

3.9 Hypergraph functions 75

3.9 Hypergraph functions

The hypergraph object represents an arbitrary hypergraph that can be decorated
with a variety of additional (and optional) data. For example, the edges can be
given weights. In general, the goal of GeoSteiner is to find a spanning tree of
minimum total weight using the edges of the hypergraph.

In this section we document all of the operations provided for creating, destroying
and manipulating hypergraph objects.

Hypergraphs can be embedded in the plane: Vertices can be given coordinates
and hyperedges can be associated with trees in the plane. Also, every hypergraph
has an associated metric object (Section 3.7), a scaling object (Section 3.13) and
a property list (Section 3.8).

The library interfaces have been designed to permit maximumflexibility in using
the various operations provided. For example, it is intended that the user be able
to define a hypergraph, solve it, modify some attributes of the hypergraph (e.g.,
change some of the edge costs), and re-solve the modified problem. The library
should be smart enough to know when the problem can be re-solved starting from
the most recent solution state — and when it is necessary to discard the previous
solution state and re-solve the current problem from scratch.

76 3 CALLABLE LIBRARY FUNCTIONS

gst create hg

Create an instance of an empty hypergraph. The hypergraph initially has no ver-
tices and no edges. After creating an empty hypergraph, the next step is normally
to give it the desired number of vertices usinggst set hg number of vertices(),
and then add the edges usinggst set hg edges(). Doing the steps in this order
avoids the failure that would result from attempting to add edges that refer to
non-existent vertices.

gst_hg_ptr gst_create_hg (int* status);

status
Status code (zero if the operation was successful and
non-zero otherwise). May beNULL if the value is not
needed.

Returns new hypergraph object.

Example:

gst_hg_ptr h;
int status;
h = gst_create_hg (&status);
if (status != 0) {

/* Something went wrong */
}
/* Make it be a complete hypergraph on 3 vertices */
status = gst_set_hg_number_of_vertices (h, 3);
if (status != 0) {

/* Error */
}
else {

static int edge_sizes [] = {2, 2, 2, 3};
static int edges [] = {0, 1, 0, 2, 1, 2, 0, 1, 2};
status = gst_set_hg_edges (h, 4, edge_sizes, edges, NULL);

}

3.9 Hypergraph functions 77

gst copy hg

Make a copy of a given hypergraph. Any data associated with the destination
hypergraph is discarded, and the following attributes are copied from the source
hypergraph (if present): vertices, edges, edge weights, metric object info, scale
object info, property list, vertex embedding, and edge embedding.

int gst_copy_hg (gst_hg_ptr dst,
gst_hg_ptr src);

dst Destination hypergraph object. All existing data in
the destination is discarded.

src Source hypergraph object to copy.

Returns zero if the hypergraph was copied successfully.

Example:

/* Assume that h is an existing hypergraph */
gst_hg_ptr newhg;
newhg = gst_create_hg (NULL);
status = gst_copy_hg (newhg, h);
if (status != 0) {

fprintf (stderr, "Error copying hypergraph\n");
exit (1);

}
gst_set_hg_edge_weights (newhg, NULL);
/* newhg is now a copy of h, but with all edge weights = 1. */

78 3 CALLABLE LIBRARY FUNCTIONS

gst copy hg edges

Make a copy of a given hypergraph with a subset of the originaledges. Any
data associated with the destination hypergraph is discarded, and the following
attributes are copied from the source hypergraph (if present): vertices, (subset of)
edges, (subset of) edge weights, metric object info, scale object info, property list,
vertex embedding, and edge embedding.

int gst_copy_hg_edges (gst_hg_ptr dst,
gst_hg_ptr src,
int nedges,
int* edges);

dst Destination hypergraph object. All existing data in
the destination is discarded.

src Source hypergraph object to copy.
nedges Number of edges to copy from source hypergraph.

edges
Index values of edges to copy from source hyper-
graph.

Returns zero if (a subset of) the hypergraph was copied successfully.

Example:

/* Assume that h is an existing hypergraph with 10 edges */
static int edges [] = {2, 4, 6, 8};
gst_hg_ptr newhg;
newhg = gst_create_hg (NULL);
status = gst_copy_hg_edges (newhg, h, 4, edges);
if (status != 0) {

fprintf (stderr, "Error copying hypergraph\n");
exit (1);

}
/* newhg is now a copy of h but having only 4 of the edges of h */

3.9 Hypergraph functions 79

gst free hg

Remove a hypergraph and free all associated memory, including associated prop-
erties.

int gst_free_hg (gst_hg_ptr H);

H
Hypergraph to free. IfNULL, this function does noth-
ing.

Returns zero if the hypergraph was freed successfully.

Example:

/* Assume that h is an existing hypergraph */
int status;
status = gst_free_hg (h);
if (status != 0) {

fprintf (stderr, "Error freeing hypergraph\n");
exit (1);

}

80 3 CALLABLE LIBRARY FUNCTIONS

gst set hg number of vertices

Define the number of vertices of a hypergraph.

int gst_set_hg_number_of_vertices (gst_hg_ptr H,
int nverts);

H Hypergraph.

nverts
Number of verticesH should have (non-negative num-
ber).

Returns zero if the number of vertices was set successfully.

Example:

/* Construct a hypergraph with 20 vertices (no error checking) */
gst_hg_ptr hg;

hg = gst_create_hg (NULL);
gst_set_hg_number_of_vertices (hg, 20);

3.9 Hypergraph functions 81

gst set hg edges

Define the set of edges of a hypergraph (default associated information).

int gst_set_hg_edges (gst_hg_ptr H,
int nedges,
int* edge_sizes,
int* edges,
double* weights);

H Hypergraph.
nedges Number of edgesH should have.
edge sizes Number of vertices for each edge.
edges Vertex indices of each edge.
weights Edge weights (ifNULL then all edge weights are 1).

Returns zero if the edges were defined successfully.

Example:

/* Construct a complete hypergraph on 3 vertices
with edge weights 1 (no error checking) */

gst_hg_ptr h;
static int edge_sizes [] = {2, 2, 2, 3};
static int edges [] = {0, 1, 0, 2, 1, 2, 0, 1, 2};

h = gst_create_hg (NULL);
gst_set_hg_number_of_vertices (h, 3);
gst_set_hg_edges (h, 4, edge_sizes, edges, NULL);

82 3 CALLABLE LIBRARY FUNCTIONS

gst set hg edge weights

Set all edge weights of a hypergraph.

int gst_set_hg_edge_weights (gst_hg_ptr H,
double* weights);

H Hypergraph.

weights
Array of edge weights of length equal to the number
of edges inH (if NULL then all edge weights are set
to 1).

Returns zero if the edges weights were set successfully.

Example:

/* Assume that h is a hypergraph with 4 edges */

static double weights [] = {1.0, 2.0, 3.0, 4.0};
int status;

status = gst_set_hg_edge_weights (h, weights);
if (status != 0) {

fprintf (stderr, "Error setting edge weights\n");
exit (1);

}
/* The edges of h now have weights 1, 2, 3 and 4 */

3.9 Hypergraph functions 83

gst set hg vertex embedding

Embed the vertices in a hypergraph in somek-dimensional space. (In the current
version only the2-dimensional space, the plane, is supported.)

int gst_set_hg_vertex_embedding (gst_hg_ptr H,
int dim,
double* coords);

H Hypergraph whose vertices should be embedded.

dim
Dimension of space (currently only dimension 2 is
supported).

coords
Vertex coordinates (x1, y1, x2, y2, . . .). Length must
be the dimension times the number of vertices in the
hypergraph.

Returns zero if the vertices were embedded successfully.

Example:

/* Assume that h is an existing hypergraph with four vertices */
static double coords [] = {0, 0, 1, 0, 1, 1, 0, 1};
int status;
status = gst_set_hg_vertex_embedding (h, 2, coords);
if (status != 0) {

fprintf (stderr, "Error embedding vertices\n");
exit (1);

}
/* The four vertices of h are now embedded as

(0,0), (0,1), (1,1) and (0,1). */

84 3 CALLABLE LIBRARY FUNCTIONS

gst set hg metric

Set the metric object associated with a hypergraph.

int gst_set_hg_metric (gst_hg_ptr H,
gst_metric_ptr metric);

H Hypergraph.

metric

Metric object that should be associated withH (see
Section 3.7 for information on metric objects). If
NULL, then the hypergraph metric will be set to
”None”.

Returns zero if metric was set successfully.

Example:

/* Assume that h is an existing hypergraph */

/* Create a Euclidean metric object */
gst_metric_ptr metric;
metric = gst_create_metric (GST_METRIC_L, 2, NULL);

/* Associate it with h */
gst_set_hg_metric (h, metric);

3.9 Hypergraph functions 85

gst set hg scale info

Set the scaling information associated with a hypergraph.

int gst_set_hg_scale_info (gst_hg_ptr H,
gst_scale_info_ptr scinfo);

H Hypergraph.

scinfo
Scaling information that should be associated with
this hypergraph (see Section 3.13). IfNULL, then no
scaling is used for this hypergraph.

Returns zero if the scaling information was set successfully.

Example:

/* Read a set points from stdin, generate FST hypergraph
and set scaling information */

gst_hg_ptr hg;
gst_scale_info_ptr scinfo;
int n;
double* terms;

n = gst_get_points (stdin, 0, &terms, scinfo);
hg = gst_generate_efsts (n, terms, NULL, NULL);
gst_set_hg_scale_info (hg, scinfo);

86 3 CALLABLE LIBRARY FUNCTIONS

gst get hg terminals

Get terminal vertices for a hypergraph. The terminal indices are returned in the
terms array.

int gst_get_hg_terminals (gst_hg_ptr H,
int* nterms,
int* terms);

3.9 Hypergraph functions 87

gst get hg number of vertices

Get the number of vertices of a hypergraph.

int gst_get_hg_number_of_vertices (gst_hg_ptr H);

H Hypergraph.

A return value of -1 implies that the hypergraph was invalid.

Example:

/* Assume that hg is an existing hypergraph */
int nverts;

nverts = gst_get_hg_number_of_vertices (hg);

/* nverts is now equal to the number of vertices in hg */

88 3 CALLABLE LIBRARY FUNCTIONS

gst get hg edges

Get the set of edges of a hypergraph. If any of the three final arguments isNULL,
the corresponding information is not returned. The user hasto allocate space
for holding the returned data. Necessary sizes for arrays can be obtained by first
obtaining the number of edges, then the edge sizes and finallythe vertices for each
edge (see example below).

int gst_get_hg_edges (gst_hg_ptr H,
int* nedges,
int* edge_sizes,
int* edges,
double* weight);

H Hypergraph.
nedges Number of edges in this hypergraph.

edge sizes
Number of vertices for each edge (pointer to an array
allocated by the user).

edges
Vertex indices of each edges (pointer to an array allo-
cated by the user).

weights
Edge weights (pointer to an array allocated by the
user).

Returns zero if the edges were queried successfully.

3.9 Hypergraph functions 89

Example:

/* Assume that H is some hypergraph */
int i, nedges, nedgeverts;
int* edge_sizes;
int* edges;
double* weight;

/* First we query the number of edges */
gst_get_hg_edges (H, &nedges, NULL, NULL, NULL);

/* Allocate space for edge sizes and edge weights */
edge_sizes = (int *) malloc (nedges * sizeof (int));
weight = (double *) malloc (nedges * sizeof (double));

/* Query edge sizes and weights */
gst_get_hg_edges (H, NULL, edge_sizes, NULL, weight);

/* Count the number of vertices in all edges */
nedgeverts = 0;
for (i = 0; i < nedges; i++)

nedgeverts += edge_sizes[i];
edges = (int *) malloc (nedgeverts * sizeof (int));

/* Finally query vertices of edges */
gst_get_hg_edges (H, NULL, NULL, edges, NULL);

90 3 CALLABLE LIBRARY FUNCTIONS

gst get hg one edge

Get information about one edge in the hypergraph. If any of the three last argu-
ments to the function isNULL, the corresponding information is not returned.

int gst_get_hg_one_edge (gst_hg_ptr H,
int edge_number,
double* weight,
int* nverts,
int* verts);

H Hypergraph.
edge number Edge number to query (first edge is number 0).
weight Weight of edge (pointer to a double variable).

nverts
Number of vertices in this edge (pointer to an int vari-
able).

terms
Vertex indices of this edges (pointer to an array allo-
cated by user).

Returns zero if the edge was queried successfully.

Example:

/* Assume that H is some hypergraph with at least 10 edges */
int nverts;
int* verts;
double weight;

/* Query edge number 10 */
gst_get_hg_one_edge (H, 10, &weight, &nverts, NULL);

/* Allocate space for vertex indices */
verts = (int *) malloc (nverts * sizeof (int));

/* Query vertex indices */
gst_get_hg_one_edge (H, 10, NULL, NULL, verts);

3.9 Hypergraph functions 91

gst get hg vertex embedding

Get the embedding of the vertices in a hypergraph.

int gst_get_hg_vertex_embedding (gst_hg_ptr H,
int* dim,
double* coords);

H Hypergraph whose vertices are embedded.

dim
Dimension of the space (pointer to an integer vari-
able).

coords

Array in which to place the vertex coordinates of the
embedding (x1, y1, x2, y2, . . .). This array must be al-
located by the user, and its length must be dimension
times the number of vertices in the hypergraph.

Returns zero if the embedding was returned successfully.

Example:

/* Assume that h is an existing hypergraph with four vertices
embedded in the plane */

double coords[8];
int status;

status = gst_get_hg_vertex_embedding(H, NULL, coords);
if (status != 0) {

fprintf (stderr, "Error querying vertex embedding\n");
exit (1);

}

/* coords now holds the coordinates of the embedded vertices */

92 3 CALLABLE LIBRARY FUNCTIONS

gst get hg one vertex embedding

Return the embedding of a single vertex in a hypergraph.

int gst_get_hg_one_vertex_embedding
(gst_hg_ptr H,
int vertex_number,
double* coords);

H Hypergraph whose vertices are embedded.

vertex number
Vertex number whose embedding should be queried
(first vertex is number 0).

coords
Coordinates of the vertex embedding (x1, y1). This ar-
ray must be allocated by the user, and its length equal
to the dimension of the space of the embedding.

Returns zero if the embedding was returned successfully.

Example:

/* Assume that h is an existing hypergraph with four vertices
embedded in the plane */

double coords[2];
int status;

/* Query embedding of vertex number 3 */
status = gst_get_hg_one_vertex_embedding(H, 3, coords);
if (status != 0) {

fprintf (stderr, "Error querying vertex embedding\n");
exit (1);

}

/* coords now holds the coordinates of vertex number 3 */

3.9 Hypergraph functions 93

gst get hg edge embedding

Return the embedding of a subset of edges in a hypergraph. If any of the four last
arguments to the function isNULL, the corresponding information is not returned.

int gst_get_hg_edge_embedding (gst_hg_ptr H,
int nhgedges,
int* hgedges,
int* nsps,
double* sps,
int* nedges,
int* edges);

H Hypergraph

nhgedges
Number of hyperedges that should be queried for em-
bedding information (when equal to 0 all edges are
returned).

hgedges
List of indices of hyperedges that should be queried.
If this argument isNULL then the firstnhgedges are
returned.

nsps
Number of Steiner points in embedding of all queried
hyperedges (pointer to int variable).

sps
Coordinates of Steiner points in the embedded hyper-
edges (pointer to double array allocated by user).

nedges
Number of edges in theembedding (pointer to int
variable).

edges

Indices of the edge endpoints inembedding (pointer
to int array allocated by user). Letn be the number
of vertices in hypergraphH. Then hypergraph vertex
endpoints have indices0 to n − 1 while Steiner end-
points have indicesn and up.

Returns zero if the embedding was queried successfully.

94 3 CALLABLE LIBRARY FUNCTIONS

Example:

/* Assume that H is an embedded hypergraph with
5 vertices and 10 edges. The complete embedding
has 15 Steiner points and 30 edges. We would like
to get the embedding of hyperedges with even indices. */

int nsps;
int nedges;
double sps[30];
int edges[60];

static int hgedges [] = {0, 2, 4, 6, 8};

gst_get_hg_edge_embedding (H, 5, hgedges,
&nsps, sps, &nedges, edges);

/* Now sps contains the Steiner point coordinates,
while edges contain edge endpoints; hypergraph
vertices have endpoint indices 0..4 and Steiner
points endpoint indices 5..19. */

3.9 Hypergraph functions 95

gst get hg one edge embedding

Return the embedding of a single edge in a hypergraph. Note that the indices of
vertices spanned by an edge can be obtained by usinggst get hg one edge().

int gst_get_hg_one_edge_embedding
(gst_hg_ptr H,
int edge_number,
int* nsps,
double* coords,
int* nedges,
int* edges);

H Hypergraph.

edge number
Hyperedge number whose embedding should be
queried (first hyperedge has number 0).

nsps
Number of Steiner points in the embedding for the
hyperedge (pointer to int variable).

coords
Coordinates of Steiner points in embedded hyperedge
(pointer to double array allocated by user).

nedges
Number of edges in theembedding (pointer to int
variable).

edges

Indices of edge endpoints in theembedding (pointer
to int array allocated by user). Letk be the number
of vertices in the hyperedge. Then hypergraph ver-
tex endpoints have indices0 to k − 1 while Steiner
endpoints have indicesk and up.

Returns zero if embedding was queried successfully.

96 3 CALLABLE LIBRARY FUNCTIONS

Example:

/* Assume that H is an embedded hypergraph with 10 edges.
We would like to get the embedding of hyperedge 7. */

int nsps;
int nedges;
double* sps;
int* edges;

gst_get_hg_one_edge_embedding (H, 7, &nsps, NULL, &nedges, NULL);

/* Allocate space */
sps = (double *) malloc (2*nsps * sizeof (double));
edges = (int *) malloc (2*nedges * sizeof (int));

gst_get_hg_one_edge_embedding (H, 7, NULL, sps, NULL, edges);

/* Now sps contains the Steiner point coordinates,
while edges contain edge endpoints. */

3.9 Hypergraph functions 97

gst get hg edge status

Return the pruning status of an edge. Whengst prune edges runs, it may
determine that some edges are “required” (such edgesmust appear in any optimal
solution). It may also determine that certain other edges are “unneeded” (at least
one optimal solution exists that does not use any “unneeded”edge). By default,
edges are neither “unneeded” nor “required.” It is impossible for an edge to be
simultaneously “unneeded” and “required.”

int gst_get_hg_edge_status (gst_hg_ptr H,
int edge_number,
int* unneeded,
int* required);

H Hypergraph.
edge number Hyperedge whose pruning status should be queried.

unneeded
Non-zero if edge is “unneeded” (pointer to an int vari-
able).

required
Non-zero if edge is “required” (pointer to an int vari-
able).

Returns zero if pruning status was queried successfully.

98 3 CALLABLE LIBRARY FUNCTIONS

Example:

/* Assume that H is an embedded hypergraph with N
edges that has been pruned. We would like to
get the pruning status of its edges. */

int i, unneeded, required;
const char * s;

for (i = 0; i < N; i++) {
gst_get_hg_edge_status (H, i, &unneeded, &required);
if (required) {

s = "required";
} else if (unneeded) {

s = "unneeded";
} else {

s = "undecided";
}
printf (" Edge %d is %s\n", s);

}

3.9 Hypergraph functions 99

gst get hg metric

Get the metric object associated with a hypergraph.

int gst_get_hg_metric (gst_hg_ptr H,
gst_metric_ptr* metric);

H Hypergraph.

metric
Metric object associated with this hypergraph (see
Section 3.7 for information on metric objects).

Returns zero if the metric was queried successfully.

Example:

/* Assume that h is an existing hypergraph */

gst_metric_ptr metric;

/* Get metric associated with h */
gst_get_hg_metric (h, metric);

100 3 CALLABLE LIBRARY FUNCTIONS

gst get hg scale info

Get the scaling information associated with a hypergraph.

int gst_get_hg_scale_info
(gst_hg_ptr H,
gst_scale_info_ptr* scinfo);

H Hypergraph.

scinfo
Scaling information associated with this hypergraph
(see Section 3.13).

Returns zero if the scaling information was queried successfully.

Example:

/* Assume that h is an existing hypergraph */

gst_scale_info_ptr scinfo;

/* Get scaling information associated with h */
gst_get_hg_scale_info (h, scinfo);

3.9 Hypergraph functions 101

gst get hg properties

Return the list of properties associated with a hypergraph.

gst_proplist_ptr
gst_get_hg_properties (gst_hg_ptr H);

H Hypergraph

Returns the property list.

Example:

/* Assume we are given a hypergraph H */
double gtime, ptime;
gst_proplist_ptr hgprop;

/* Get timing information from the hypergraph, if available */
hgprop = gst_get_hg_properties (H);
gtime = 0.0; ptime = 0.0;
gst_get_dbl_property (hgprop, GST_PROP_HG_GENERATION_TIME, >ime);
gst_get_dbl_property (hgprop, GST_PROP_HG_PRUNING_TIME, &ptime);

printf ("Generation time: %.2f\n", gtime);
printf ("Pruning time: %.2f\n", ptime);
printf ("Total time: %.2f\n", ptime + gtime);

/* We can set our own property in the same list e.g. for later use */
#define GST_PROP_USER_TOTAL_TIME -1000
gst_set_dbl_property (hgprop, GST_PROP_USER_TOTAL_TIME, gtime + ptime);

102 3 CALLABLE LIBRARY FUNCTIONS

gst hg to graph

Given a hypergraph having a geometric embedding for each of its vertices and
edges, construct an ordinary graph containing the individual edges in the embed-
ding. For a rectilinear embedding the parameterGST PARAM GRID OVERLAY
is used to specify that the edges of the reduced grid graph rather than individual
edges of the embedding should be returned.

The original vertices in the hypergraph are marked asterminals in the new graph,
but the only way3 to get this information out of the new graph is to print it using
functiongst save hg().

gst_hg_ptr gst_hg_to_graph (gst_hg_ptr H,
gst_param_ptr param,
int* status);

H Hypergraph
param Parameter set.

status
Status code (zero if the operation was successful and
non-zero otherwise).

Returns the new graph which represents the embedding.

Example:

/* Assume we are given an embedded hypergraph H */

H2 = gst_hg_to_graph (H, NULL, NULL);

/* Now H2 is a graph of the embedding of H. Print it. */
gst_save_hg (stdout, H2, NULL);

3In a future release of the library, there will be other means of obtaining this information.

3.10 FST generation and pruning functions 103

3.10 FST generation and pruning functions

All algorithms for solving geometric Steiner tree problemsin GeoSteiner use the
two-phase approach that consists of full Steiner tree (FST)generation and con-
catenation.

FST generation is the process of generating a (hopefully small) set of FSTs that
is known to contain a Steiner minimum tree (SMT) as a subset. The input to
an FST generation algorithm is the set of terminal points, and the output is an
embedded hypergraph in which the vertices correspond to terminals and the edges
correspond to FSTs. The embedding of each hyperedge (or FST)is the geometric
tree structure of the FST.

In this section we describe the interface to all FST generation algorithms. They
are all fairly similar. In addition, a FSTpruning function is given. This function
reduces the set of FSTs — or removes edges from the hypergraph— such that
the resulting hypergraph still contains an SMT. This may speed up the following
concatenation algorithm, in particular for very large problem instances.

104 3 CALLABLE LIBRARY FUNCTIONS

gst generate fsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)
known to contain an SMT for the point set. The metric that should be used is
passed as a parameter (see section 3.7 for more on creating metric objects). The
generated FSTs are returned as edges in an embedded hypergraph.

gst_hg_ptr
gst_generate_fsts (int nterms,

double* terms,
gst_metric_ptr metric,
gst_param_ptr param,
int* status);

nterms Number of terminals.
terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)
metric The metric for which FSTs are to be generated.
param Parameter set (NULL=default parameters).
status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;
double * terms;
gst_hg_ptr hg;
gst_metric_ptr metric;

/* Read points from stdin */
n = gst_get_points (stdin, 0, &terms, NULL);

/* Establish lambda-6 metric */
metric = gst_create_metric (GST_METRIC_UNIFORM, 6, NULL);

/* Generate lambda-6 FSTs */
hg = gst_generate_fsts (n, terms, metric, NULL, NULL);

3.10 FST generation and pruning functions 105

gst generate efsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)
known to contain anEuclidean SMT for the point set. The FSTs are returned as
edges in an embedded hypergraph.

gst_hg_ptr
gst_generate_efsts (int nterms,

double* terms,
gst_param_ptr param,
int* status);

nterms Number of terminals.
terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)
param Parameter set (NULL=default parameters).
status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;
double * terms;
gst_hg_ptr hg;

/* Read points from stdin */
n = gst_get_points (stdin, 0, &terms, NULL);

/* Generate Euclidean FSTs */
hg = gst_generate_efsts (n, terms, NULL, NULL);

106 3 CALLABLE LIBRARY FUNCTIONS

gst generate rfsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)
known to contain arectilinear SMT for the point set. The FSTs are returned as
edges in an embedded hypergraph.

gst_hg_ptr
gst_generate_rfsts (int nterms,

double* terms,
gst_param_ptr param,
int* status);

nterms Number of terminals.
terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)
param Parameter set (NULL=default parameters).
status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;
double * terms;
gst_hg_ptr hg;

/* Read points from stdin */
n = gst_get_points (stdin, 0, &terms, NULL);

/* Generate rectilinear FSTs */
hg = gst_generate_rfsts (n, terms, NULL, NULL);

3.10 FST generation and pruning functions 107

gst generate ofsts

Given a point set (terminals) in the plane, generate a set of FSTs (hyperedges)
known to contain anoctilinear SMT for the point set. The FSTs are returned as
edges in an embedded hypergraph.

gst_hg_ptr
gst_generate_ofsts (int nterms,

double* terms,
gst_param_ptr param,
int* status);

nterms Number of terminals.
terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)
param Parameter set (NULL=default parameters).
status Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

int n;
double * terms;
gst_hg_ptr hg;

/* Read points from stdin */
n = gst_get_points (stdin, 0, &terms, NULL);

/* Generate octilinear FSTs */
hg = gst_generate_ofsts (n, terms, NULL, NULL);

108 3 CALLABLE LIBRARY FUNCTIONS

gst hg prune edges

Given a hypergraphH, return a hypergraphH ′ that has the same vertices asH,
but a (possibly) reduced set of edges such that there still exists an optimal solution
to H in H ′. The pruning algorithms are metric dependent and require a geometric
embedding of the hypergraph vertices and edges.

gst_hg_ptr gst_hg_prune_edges (gst_hg_ptr H,
gst_param_ptr param,
int* status);

H Hypergraph.
param Parameter set (NULL=default parameters).
status Status code (zero if successful).

Returns new pruned hypergraph.

Example:

/* Assume that hg is an FST hypergraph */

gst_hg_ptr hg1;

/* Prune the set of FSTs in hg */

hg1 = gst_hg_prune_edges (hg, NULL, NULL);

/* Hypergraph hg1 now has the same set of vertices as hg,
but (in most cases) a significantly smaller set of edges that
still contains an SMT as a subset */

3.11 Hypergraph optimization functions 109

3.11 Hypergraph optimization functions

The optimization problem associated with hypergraphs is the minimum spanning
tree (MST) in hypergraph problem. Solving this problem solves the FST concate-
nation problem — which is the second of the two phases for solving geometric
Steiner tree problems.

The library contains a powerful solver for the general MST inhypergraph prob-
lem. This solver uses linear programming and branch-and-cut (or backtrack search
for very small problem instances). A large number of parameters can be set to con-
trol the solver; consult Appendix A.3, A.4 and A.5 for a complete list of all solver
parameters.

A solution state object has typegst solver ptr. It has an associated hyper-
graph for which an MST should be found. The solver can be stopped and restarted,
e.g., depending on either the quality of (approximate) solutions that are found in
the solution process, or on the amount of running time used. The solution state ob-
ject can contain zero or more feasible (though not necessarily optimal) solutions
to the problem. A solution state object refers to both an hypergraph object and
a parameter object (from which all necessary parameter values are obtained), as
illustrated in Figure 6 on page 16. A demonstration program is given in Figure 5
on page 12.

110 3 CALLABLE LIBRARY FUNCTIONS

gst create solver

Create a solution state object for a given hypergraph. The solution process is
started by calling the functiongst hg solve(), and passing the created object as
parameter.

gst_solver_ptr
gst_create_solver (gst_hg_ptr H,

gst_param_ptr param,
int* status);

H Hypergraph.
param Parameter set (NULL=default parameters).
status Status code (zero if successful).

Returns new problem solution state object.

An example is given in Section 2.2 (Figure 5 on page 12).

3.11 Hypergraph optimization functions 111

gst free solver

Free a solution state object. All memory associated with this solution state object,
except from the associated hypergraph and its objects, are destroyed.

int gst_free_solver (gst_solver_ptr solver);

solver Solution state object. Does nothing ifNULL.

Returns zero if the operation was successful and non-zero otherwise.

An example is given in Section 2.2 (Figure 5 on page 12).

112 3 CALLABLE LIBRARY FUNCTIONS

gst hg solve

Solve a tree problem for a given hypergraph. In the current version, this function
by default computes aminimum spanning tree (MST) in the hypergraph associ-
ated with the given solution state object; depending on the parameters given, this
function may also compute an heuristic solution to this problem.

This function can be repeatedly called to solve a (time-consuming) problem, e.g.,
by setting a CPU time limit for each call. The quality of any solution(s) obtained
within the given constraints can be queried by callinggst get solver status().

int gst_hg_solve (gst_solver_ptr solver,
int * reason);

solver Solution state object.

reason
Reason that the solver exited — see the description
below. If this parameter isNULL, the reason for exit-
ing is not returned.

The function return value indicates whether any serious errors were encountered
in the solution process. If this value is zero it means the solver ran successfully
and without problems — although it might have deliberately have been preempted
by the user.

A non-zero function return value indicates the error causing the solver to exit pre-
maturely. This could for example beGST ERR BACKTRACK OVERFLOWwhich
can happen if one has set the solver to use backtrack search onan instance which
is too big for this purpose (GST PARAM SOLVER ALGORITHM), i.e., more than
32 hyperedges.

When using default parameters (and when not using abort signals) then a value of
zero for thereason parameter means that the solution search space was com-
pletely exhausted. In this case the optimal solution has been found — unless the
problem was found to be infeasible. However, if the user has set any of the solver
stopping condition parameters, such as the CPU time limit, the actual reason for

3.11 Hypergraph optimization functions 113

exiting the solution process is returned using thereason parameter. Possible
return values are one of the following:

Macro Name Description
GST SOLVE NORMAL Normal exit (search space exhausted)
GST SOLVE GAP TARGET Requested gap target obtained
GST SOLVE LOWER BOUND TARGET Requested lower bound obtained
GST SOLVE UPPER BOUND TARGET Requested upper bound obtained
GST SOLVE MAX BACKTRACKS Max. number of backtracks exceeded
GST SOLVE MAX FEASIBLE UPDATES Max. feasible updates exceeded
GST SOLVE ABORT SIGNAL Abort signal received
GST SOLVE TIME LIMIT CPU time limit exceeded

An example is given in Section 2.2 (Figure 5 on page 12).

114 3 CALLABLE LIBRARY FUNCTIONS

gst get solver status

Return the status of the solution (if any) associated with the given solution state
object.

int gst_get_solver_status (gst_solver_ptr solver,
int* status);

solver Solution state object.
status Status of the current solution (if any).

Returns zero if the operation was successful and non-zero otherwise.

The value of thestatus parameter is one of the following:

Macro Name Description
GST STATUS OPTIMAL Optimal solution is available
GST STATUS INFEASIBLE Problem is infeasible
GST STATUS FEASIBLE Search incomplete, feasible solution(s) known
GST STATUS NO FEASIBLE Search incomplete, no feasible solutions known
GST STATUS NO SOLUTION Solver never invoked/hypergraph changed

An example is given in Section 2.2 (Figure 5 on page 12).

3.11 Hypergraph optimization functions 115

gst hg solution

Retrieve (one of) the best feasible solutions currently known for a given solution
state object.

int gst_hg_solution (gst_solver_ptr solver,
int* nedges,
int* edges,
double* length,
int rank);

solver Solution state object.
nedges Number of edges in the returned solution tree.
edges Array of edge numbers in the returned solution tree.
length Length of the returned tree.

rank
Rank of the solution that should be returned, where 0
is the best solution (see also discussion below).

Returns zero if the operation was successful and non-zero otherwise.

The maximal number of feasible solutions that will be retained by the solver is de-
termined by the parameterGST PARAM NUM FEASIBLE SOLUTIONS. How-
ever, for a given solution state object, the actual number offeasible solutions may
be less than this maximum — and even zero.

The function returnsGST ERR RANK OUT OF RANGE whenrank is less than
0 or greater than or equal to the number of feasible solutionsavailable.

116 3 CALLABLE LIBRARY FUNCTIONS

Example:

/* We assume that solver is a solution state object.
This code prints all feasible solutions ordered by their rank. */

int i, rank = 0;
int nedges;
int* edges;
double length;

while (1) {
/* Get number of edges in this solution.

Exit when no more solutions are available. */
if (gst_hg_solution (solver, &nedges, NULL, NULL, rank) != 0)

break;

/* Get edge indices and length of solution. */
edges = (int *) malloc (nedges * sizeof (int));
gst_hg_solution (solver, NULL, edges, &length, rank);

/* Print edge indices and length. */
printf ("Rank %d: Length is %f. Edges:", rank, length);
for (i = 0; i < nedges; i++)

printf(" %d", edges[i]);
printf("\n");
free (edges);
rank++;

}

3.11 Hypergraph optimization functions 117

gst get solver properties

Return the property list associated with a solution state object.

gst_proplist_ptr
gst_get_solver_properties (gst_solver_ptr solver);

solver Solution state object.

Returns the property list.

Example:

/* We assume that solver is defined ...*/
double lower_bound;

if (!gst_get_dbl_property(gst_get_solver_properties(solver),
GST_PROP_SOLVER_LOWER_BOUND,
&lower_bound) {

printf("Lower bound for solver object is %f\n", lower_bound);
}

118 3 CALLABLE LIBRARY FUNCTIONS

3.12 Message handling functions

All output messages from GeoSteiner are passed through user-controllable chan-
nels. A given channel may write its output to more than one output (screen/files).
Channels have typegst channel ptr.

In this section we describe the functions for creating and freeing channels, for
adding output (screen/files) to a channel, and the basic functions for writing to
channels.

3.12 Message handling functions 119

gst create channel

Create a channel with an optional set of options. By default,output is unformat-
ted. In the current version, the only formatted output is Postscript; see function
gst channel setopts()for an example of how to activate Postscript formatting.
Consultgeosteiner.h for the detailed structure ofgst channel options.

gst_channel_ptr
gst_create_channel

(const gst_channel_options* chanopts,
int* status);

chanopts
Channel options (ifNULL then default options are
used).

status Status code (zero if successful).

Returns the new channel object.

Example:

/* Create a channel with default options.
Ignore returned status. */

gst_channel_ptr chan;
chan = gst_create_channel(NULL, NULL);

120 3 CALLABLE LIBRARY FUNCTIONS

gst free channel

Free a channel and all its destinations.

int gst_free_channel (gst_channel_ptr chan);

chan Channel object. Does nothing ifNULL.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is an existing channel object */
gst_free_channel (chan);

/* All memory used by chan is now freed */

3.12 Message handling functions 121

gst channel getopts

Get channel options.

int gst_channel_getopts
(gst_channel_ptr chan,
gst_channel_options* options);

chan Channel opbject.

options
Pointer to the channel option structure where channel
options should be returned.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is a channel */
gst_channel_options chanopts;

/* Get options and active Postscript output */
gst_channel_getopts (chan, &chanopts);
chanopts.flags |= GST_CHFLG_POSTSCRIPT;
gst_channel_setopts (chan, &chanopts);

122 3 CALLABLE LIBRARY FUNCTIONS

gst channel setopts

Set channel options.

int gst_channel_setopts
(gst_channel_ptr chan,
const gst_channel_options* options);

chan Channel opbject.

options
Pointer to the channel option structure that contains
new channel options.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is a channel */
gst_channel_options chanopts;

/* Get options and active Postscript output */
gst_channel_getopts (chan, &chanopts);
chanopts.flags |= GST_CHFLG_POSTSCRIPT;
gst_channel_setopts (chan, &chanopts);

3.12 Message handling functions 123

gst channel add file

Add a file destination to a channel.

gst_dest_ptr
gst_channel_add_file (gst_channel_ptr chan,

FILE* fp,
int* status);

chan Channel object.
fp File handle.
status Status code (zero if successful).

Returns the new destination object (of typegst dest ptr).

Example:

/* Setup a channel for stdout */
gst_channel_ptr chan;

chan = gst_create_channel (NULL, NULL);
gst_channel_add_file (chan, stdout, NULL);

124 3 CALLABLE LIBRARY FUNCTIONS

gst channel add functor

Add a function as destination to a channel.

typedef size_t
gst_channel_func (const char* buf,

size_t cnt,
void* handle);

gst_dest_ptr
gst_channel_add_functor

(gst_channel_ptr chan,
gst_channel_func* func,
void* handle,
int* status);

chan Channel object.
func Function that should be added as destination.

handle
Handle used for passing error codes from the function
back to the application.

status Status code (zero if successful).

Returns the new destination object (of typegst dest ptr).

3.12 Message handling functions 125

Example:

static void
output_text_to_GUI (void * handle,

const char * text,
size_t nbytes)

{
Widget * widget = handle;

my_gui_write_text_to_text_widget (widget, text, nbytes);
}

int main (int argc, char **argv)
{
int status;
Widget * widget = my_gui_create_text_widget ();
gst_channel_ptr mychan = gst_create_channel (NULL, NULL);
gst_param_ptr myparm = gst_create_param (NULL);

/* Add functor to write output to GUI window. */
gst_channel_add_functor (mychan,

output_text_to_GUI,
widget,
&status);

gst_set_cnh_param (myparm,
GST_PARAM_PRINT_SOLVE_TRACE,
mychan);

/* Problems solved using myparm will send */
/* trace output to the GUI window. */

}

126 3 CALLABLE LIBRARY FUNCTIONS

gst channel rmdest

Remove a destination from a channel.

int gst_channel_rmdest (gst_dest_ptr dest);

dest Destination that should be removed.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that dest is a destination object */
gst_channel_rmdest (dest);

/* Destination object dest is now removed from its channel */

3.12 Message handling functions 127

gst channel write

Write a string to all destinations in a channel.

int gst_channel_write (gst_channel_ptr chan,
const char* text,
size_t nbytes);

chan Channel object.
text Buffer with text that should be written.
nbytes Number of bytes in buffer.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that chan is a channel. */
char* hello = "Hello, World!\n";
gst_channel_write (chan, hello, strlen(hello));

128 3 CALLABLE LIBRARY FUNCTIONS

gst channel printf

Print a formatted string to all destinations in a channel.

int gst_channel_printf (gst_channel_ptr chan,
const char* format,
...) _GST_PRINTF_ARGS (2,3);

chan Channel object.
format Printf formatting string.
... Arguments for formatting string.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Let chan be a channel, and let i1 and i2
be two integer variables. */

gst_channel_printf (chan, "i1 = %d i2 = %d\n", i1, i2);

3.13 Input and output functions 129

3.13 Input and output functions

A number of functions are provided for input and output of hypergraphs. The
input/output format can be chosen using parameters. Scaling information can be
associated with input points, and numbers can be printed in unscaled using this
information.

130 3 CALLABLE LIBRARY FUNCTIONS

gst create scale info

Create a scaling information object.

gst_scale_info_ptr gst_create_scale_info (int* status);

status Status code (zero if successful).

Returns the new scaling information object.

Example:

/* Create a new scaling information object
and use it to hold scaling information for
a set of points read from stdin. */

int n;
double* terms;
gst_scale_info_ptr scinfo;

scinfo = gst_create_scale_info (NULL);
n = gst_get_points (stdin, 0, &terms, scinfo);

3.13 Input and output functions 131

gst free scale info

Free a scaling information object.

int gst_free_scale_info (gst_scale_info_ptr scinfo);

scinfo Scaling information object that should be freed.

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Assume that scinfo is a scaling information object */
gst_free_scale_info (scinfo);

/* All memory used by scinfo is now freed */

132 3 CALLABLE LIBRARY FUNCTIONS

gst get points

Reads a point set from a file (e.g., stdin). Point coordinatesshould be separated
by whitespace. Reads until end-of-file or until a specified number of points have
been read.

A scaling information object can be associated with the set of points that are read;
if such an object is passed as an argument, this function attempts to find an ap-
propriate scaling for the points to maximize the accuracy ofthe internal (double)
representation. If the scaling information object isNULL, no scaling is performed.

int gst_get_points (FILE* fp,
int maxpoints,
double** points,
gst_scale_info_ptr scinfo);

fp Input file to read from.

maxpoints
Maximum number of points to read (if zero then read
until end-of-file).

points
Array containing read points (which must be allocated
by the userexcept whenmaxpoints = 0).

scinfo Scaling information object.

Returns the number of read points.

Example:

/* Read a set of points from stdin (until end-of-file).
A scaling information object is used. */

int n;
double* terms;
gst_scale_info_ptr scinfo;

scinfo = gst_create_scale_info (NULL);
n = gst_get_points (stdin, 0, &terms, scinfo);

3.13 Input and output functions 133

gst compute scale info digits

Set up various parameters needed for outputting scaled coordinates. Coordi-
nates/distances are printed with the minimum fixed precision whenever this gives
the exact result, that is, if all terminal coordinates are integral, they should al-
ways be written without a decimal point. Otherwise we will print the coordi-
nates/distances with full precision.

int gst_compute_scale_info_digits
(int nterms,
double* terms,
gst_scale_info_ptr scinfo);

nterms Number of terminals.
terms Terminals in an array of doubles (x1, y1, x2, y2, . . .)
scinfo Scaling information object that should be modified.

Returns zero if operation was successful and non-zero otherwise.

Example:

/* Assume that terms holds a set of n terminals
and that scinfo is an associated scaling
information object. Find the minimum number of digits
necessary when printing unscaled coordinates. */

gst_compute_scale_info_digits (n, terms, scinfo);

134 3 CALLABLE LIBRARY FUNCTIONS

gst unscale to string

Convert a given internal scaled coordinate to a printable unscaled ASCII string.
The internal form is in most cases an integer (to eliminate numeric problems), but
the unscaled data may involve decimal fractions.

char* gst_unscale_to_string
(char* buffer,
double val,
gst_scale_info_ptr scinfo);

buffer Write unscaled string to this buffer. It should be allo-
cated to hold at least 32 characters.

val Double value that should be unscaled.
scinfo Scaling information object.

Returns a pointer to a string holding the unscaled value.

Example:

/* Print a set of n terminals in array terms
to channel chan. Scaling information is
given by scinfo. */

int i;
char buf1[32], buf2[32];

for (i = 0; i < n; i++) {
gst_unscale_to_string (buf1, terms[2*i], scinfo);
gst_unscale_to_string (buf2, terms[2*i+1], scinfo);
gst_channel_printf (chan, "(%s, %s)\n", buf1, buf2);

}

3.13 Input and output functions 135

gst unscale to double

Convert a given internal form coordinate to an unscaled double.

double gst_unscale_to_double
(double val,
gst_scale_info_ptr scinfo);

val Double value that should be unscaled.
scinfo Scaling information object.

Returns an unscaled double approximation.

Example:

/* Compute an unscaled array of terminal coordinates
from a scaled set of n terminals in array terms.
Scaling information is given by scinfo. */

int i;
double* unscaled_terms;

unscaled_terms = (double *) malloc (2 * n * sizeof (double));

for (i = 0; i < 2*n; i++) {
unscaled_terms[i] = gst_unscale_to_double (terms[i],

scinfo);
}

136 3 CALLABLE LIBRARY FUNCTIONS

gst load hg

Load a hypergraph from an input file. The function creates a new hypergraph and
adds the vertices and edges read from the input file. The file format must be one
of the FST data formats given in Appendix E.

gst_hg_ptr gst_load_hg (FILE* fp,
gst_param_ptr param,
int* status);

fp Input file to read from.
param Parameter set (currently not used).
status Status code (zero if successful).

Returns the hypergraph that is read.

Example:

/* Load a hypergraph from stdin */
gst_hg_ptr H;
H = gst_load_hg (stdin, NULL, NULL);

3.13 Input and output functions 137

gst save hg

Print a hypergraph to a file. The print format can be specified by parameter
GST PARAM SAVE FORMAT.

int gst_save_hg (FILE* fp,
gst_hg_ptr H,
gst_param_ptr param);

fp Print to this file.
H Hypergraph that should be printed.
param Parameter set (NULL=default parameters).

Returns zero if the operation was successful and non-zero otherwise.

Example:

/* Print a hypergraph H to stdout using
the default print format */

gst_save_hg (stdout, H, NULL);

138 3 CALLABLE LIBRARY FUNCTIONS

3.14 Miscellaneous functions

In this section we describe a few miscellaneous functions, e.g., asynchronous
functions that may be used by signal handlers.

3.14 Miscellaneous functions 139

gst deliver signals

This function is designed to be safely callable from a signalhandler. The given
signals are delivered to the given solver, which responds tothem at some point in
the near future. The signals parameter is the bit-wise OR of one or more special
signal values defined below.

void gst_deliver_signals (gst_solver_ptr solver,
int gstsignals);

solver Solution state object.

gstsignals
Bit vector defining the signals that should be delivered
to the solver; see table below for a list of possible
signals.

Returns nothing.

The following is a list of possible signals that can be delivered to the solver:

Macro Name Description
GST SIG ABORT Abort computation
GST SIG FORCE BRANCH Stop cutting and force a branch
GST SIG STOP TEST BVAR Stop testing branch variables and

use the best one seen so far
GST SIG STOP SEP Abort the separation routines

and continue with all cuts
discovered so far

Example:

/* Assume that solver is a solution state object.
Deliver a signal to force a branch. */

gst_deliver_signals (solver, GST_SIG_FORCE_BRANCH);

140 4 STAND-ALONE PROGRAMS

4 Stand-Alone Programs

Below we first give some examples of program invocations. This is followed by
a complete description of each stand-alone program. Note that a short description
of each program also can be obtained by running the program with the-h option.

The following command will generate a set of 70 random pointsand compute a
rectilinear Steiner minimal tree for it:

rand_points 70 | rfst | bb

The following computes an Euclidean Steiner minimal tree

rand_points 70 | efst | bb

and the following computes an octilinear Steiner minimal tree for the same set of
points

rand_points 70 | ufst | bb

Note that randpoints always generates the same sequence of points unless given
the-r or -soption.

The following (Bourne shell) examples can be used to generate complete printable
postscript plots for these problem instances:

(cat prelude.ps; rand_points 70 | rfst | bb) >rsmt70.ps
(cat prelude.ps; rand_points 70 | efst | bb) >esmt70.ps
(cat prelude.ps; rand_points 70 | ufst | bb) >usmt70.ps

The complete set of FSTs can also be plotted as follows:

(cat prelude.ps; rand_points 70 | rfst | plotfst -fgo) >rfsts.ps
(cat prelude.ps; rand_points 70 | efst | plotfst -fgo) >efsts.ps
(cat prelude.ps; rand_points 70 | ufst | plotfst -fgo) >ufsts.ps

A reduced Hanan grid in the OR-library format (for the rectilinear problem) can
be generated as follows:

141

rand_points 70 | rfst | fst2graph

By pruning the set of FSTs, an even more reduced grid graph canbe generated:

rand_points 70 | rfst | prunefst | fst2graph

An Euclidean Steiner minimal tree for theberlin52.tsp instance from TSPLIB
can be constructed and displayed as follows (assuming that the fileberlin52.tsp
is present in your GeoSteiner directory):

(cat prelude.ps; lib_points <berlin52.tsp | efst | bb) | gv -

142 4 STAND-ALONE PROGRAMS

rand points

Generates random point sets. There is considerable flexibility in choosing the size,
precision and scaling factor for the generated point coordinates. By default, the
coordinates are almost always real numbers, uniformly distributed in the interval
[0, 1) (see below for exceptions to this rule). Several pseudo-random generator
algorithms are supported. The number of digits per coordinate (both default and
maximum) vary by generator, as described below. The following options are per-
mitted:

-b Binary mode. Generates coordinates that are uniformly dis-
tributed doubles in[0, 1), outputting them with full precision.

-d N Generate decimal numbers having N digits. (See below for default
and maximum values, which vary by generator.)

-g G Use pseudo-random number generator G. (See below.)
-k KEY Modify default generator seed with KEY, which can be arbitrary

text.
-p N Make N of the coordinate digits be fractional (i.e., to the right of

the decimal point). Default is for all digits to be fractional.
-r Randomize. Use an initial seed chosen from the current date and

time.
-s FILE If FILE exists, read the generator and its initial seed from this file.

When finished, write the generator and final seed to this file.

The-g G argument allows choosing between the following pseudo-random num-
ber generators:

Default : Max
G Digits Description
0 4 : 5 The “legacy” random generator. It is based on the original

PDP-11 Unix rand(3) function (with all of its ugly warts
intact). Its randomness is quite poor.

1 7 : 9 The “new” random generator. It uses a 64-bit shift regis-
ter with XOR feedback, and produces a reasonable level of
randomness.

2 7 : 19 The “AES-256” random generator. It uses the AES-256
block cipher as its fundamental entropy source, producing
truly excellent randomness. GeoSteiner must be built with
GMP in order for this generator to be available.

143

If no generator is specified, randpoints will use generator 2 (AES-256), if avail-
able. Otherwise, generator 1 is used. The default generatorcan be overridden
using the RANDPOINTS DEFAULT GENERATOR environment variable.

Note that using -s to load an intial seed from an existing seedfile has the effect of
specifying the generator, since there is a data field within the seed file that specifies
the generator. (This data field is necessary because the format of the seed file state
information is different for each generator.) If both -g and-s are specified, then
either (1) the seed file mustnot yet exist, or (2) the generator specified with -g
must match that specified within the seed file.

Previous versions of randpoints only supported generators 0 and 1, with the de-
fault being to use generator 0 to generate 4-digit integer coordinates. As a special
case, when using generator 0 (legacy) with neither the -d nor-p arguments, the
current version of randpoints also generates 4-digit integers, thereby replicat-
ing the behavior of previous versions of randpoints. Users who prefer the point
sets produced by previous versions of randpoints can obtain these same, familiar
point sets without any additional command line arguments simply by setting the
environment variable

RAND POINTS DEFAULT GENERATOR=0

144 4 STAND-ALONE PROGRAMS

lib points

Reads a point set in either TSPLIB or OR-library format from stdin and converts
the input to point coordinates as required byefst, rfst or ufst. The program auto-
matically determines the input file type. The program has oneoptional parameter
(which has value 1 by default) that specifies which instance number should be
extracted from an OR-library file.

145

efst

Reads a point set from stdin, and generates a set of EuclideanFSTs that contains
at least one Euclidean Steiner minimal tree. The following options are permitted:

-d txt Description of problem instance.
-g Use greedy heuristic instead of Smith-Lee-Liebman (more time

consuming but generates fewer eq-points).
-k K Generate only FSTs having at most K terminals. This can save

considerable time but can also eliminate FSTs that must be inthe
optimal Steiner tree (i.e., solutions can become suboptimal).

-m M Use multiple precision. Larger M use it more. Default is M=0
which disables multiple precision. The use of this option requires
that GeoSteiner be configured to use the GNU Multi-Precision
arithmetic library (GMP). (See the INSTALL file for more de-
tails).

-t Print detailed timings to stderr.
-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.
-Z P V Set parameter P to value V, e.g.-ZEPS MULT FACTOR 64

sets the epsilon multiplication factor to 64
(GST PARAM EPS MULT FACTOR = 64).

146 4 STAND-ALONE PROGRAMS

rfst

Reads a point set from stdin, and generates a set of rectilinear FSTs that contains
at least one rectilinear Steiner minimal tree. The following options are permitted:

-d txt Description of problem instance.
-k K Generate only FSTs having at most K terminals. This can save

time but can also eliminate FSTs that must be in the optimal
Steiner tree (i.e., solutions can become suboptimal).

-t Print detailed timings to stderr.
-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.
-Z P V Set parameter P to value V, e.g.-ZINCLUDE CORNERS 0

disables the generation of corner points
(GST PARAM INCLUDE CORNERS = 0)

147

ufst

Reads a point set from stdin, and generates a set of uniformly-oriented FSTs that
contains at least one uniformly-oriented Steiner minimal tree. The following op-
tions are permitted:

-d txt Description of problem instance.
-k K Generate only FSTs having at most K terminals. This can save

time but can also eliminate FSTs that must be in the optimal
Steiner tree (i.e., solutions can become suboptimal).

-l L Number of orientations (default: 4).
-t Print detailed timings to stderr.
-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.
-Z P V Set parameter P to value V, e.g.-ZINCLUDE CORNERS 0

disables the generation of corner points
(GST PARAM INCLUDE CORNERS = 0)

148 4 STAND-ALONE PROGRAMS

bb

The FST concatenation algorithm using branch-and-cut to solve an IP formulation
of the problem. The FST data is read from stdin and a plot of thesolution is
produced on stdout in an “incomplete” postscript form. A printable postscript file
can be obtained byprepending the file ”prelude.ps” to the program output. If you
want this file to be included in some other document then it needs a bounding box.
This can be obtained by running it througheps2eps(GhostScript 6.01 or later).

Various trace messages appear in the output as postscript comments. (The name
bb is for branch-and-bound – note that the namebc is already taken on Unix.)
The following options are permitted:

-2 Omit all 2-terminal Subtour Elimination Constraints (SEC’s)
from the initial constraint pool.

-b Disable ”strong branching”, which chooses branching variables
very carefully.

-B N Set branch variable selection policy. N=0: naive max of mins,
N=1: smarter lexicographic max of mins (default), N=2: product
of improvements.

-c P Pathname of checkpoint file to restore (if present) and/or update.
The files are actually named P.chk and P.ub, with temporary files
named P.tmp, P.new and P.nub.

-f The only information dumped is the FSTs in the best solu-
tion found. This can then be given to dumpfst/plotfst. E.g.
rand points | efst | bb -f | dumpfst -sl

-H Force the use of the backtrack search. This will result in an error
if there are more than 32 edges. Note that there is still a limit on
the number of backtracks (GST PARAM MAX BACKTRACKS). If
using this option one might also want to set backtrack limit to
infinity (otherwise an optimal solution might not be found).

-l T Sets a CPU time limit (in seconds) of T. Example CPU
times are: -l 3days2hours30minutes15seconds, -l
1000seconds, -l 1000 and-l 2h30m.

-m P Merge constraints from checkpoint file P with those of the formu-
lation.

149

-n N Output N best solutions (default: 1).
-r Plot the optimal LP relaxation solution for the root node, but only

if it is fractional.
-R When optimal root LP relaxation is obtained, determine for each

LP iteration the number of final constraints whose first violation
occurred during that iteration.

-t Do not include the title string in the postscript output (name,
length and time).

-T N Search N times more thoroughly for strong branching variables.
-u B Specify B to be the initial upper bound assumed by the branch-

and-bound.
-z N Set the target number of pool non-zeros to N.
-Z P V Set parameter P to value V, e.g.-ZGAP TARGET 0.5 sets

GST PARAM GAP TARGET = 0.5.

When configured to use CPLEX, the following additional option is permitted:

-a M N Force CPLEX allocation to be at least M rows and N non-zeros.

When configured to uselp solve, the following additional options are permitted:

-p Turn on the use of perturbations. This is the method that
lp solve 2.3 uses to deal with degenerate problems.

-s Turn on the use of problem scaling. Once again a rather crude
attempt to address problems that are badly behaved numerically.

The following “grep-able” items appear in the output withinpostscript comments,
and may be potentially useful:

@0 The instance description from the FST data file.

@1 Summary statistics:

– Number of terminals

– Number of FSTs/hyperedges

150 4 STAND-ALONE PROGRAMS

– Number of branch-and-bound nodes

– Number of LPs solved

– Phase 1 CPU time (FST generation)

– Phase 2 CPU time (branch-and-cut)

– Total CPU time

@2 LP/IP statistics:

– Length of optimal Steiner tree

– Length of LP relaxation at root node

– Percent of LP/IP ”gap”

– # of LPs solved for root node

– CPU time for root node

– Percent reduction of SMT over MST

@3 Initial constraint pool statistics:

– Number of rows in pool

– Number of non-zeros in pool

– Number of rows in LP tableau

– Number of non-zeros in LP tableau

@4 Constraint pool statistics for root node:

– Number of rows in pool

– Number of non-zeros in pool

– Number of rows in LP tableau

– Number of non-zeros in LP tableau

@5 Final constraint pool statistics:

– Number of rows in pool

– Number of non-zeros in pool

– Number of rows in LP tableau

151

– Number of non-zeros in LP tableau

@6 Statistics on FSTs occurring in the SMT:

– Number of FSTs in SMT

– Average FST size in SMT

– Maximum FST size in SMT

– Number of FSTs of size 2 in SMT

– Number of FSTs of size 3 in SMT

– Number of FSTs of size 4 in SMT

– Number of FSTs of size 5 in SMT

– Number of FSTs of size 6 in SMT

– Number of FSTs of size 7 in SMT

– Number of FSTs of size 8 in SMT

– Number of FSTs of size 9 in SMT

– Number of FSTs of size 10 in SMT

– Number of FSTs of size> 10 in SMT

@C Coordinates of a Steiner point in the optimal solution. The Steiner points
form a ”certificate” of the optimal solution since the optimal solution can
be reconstructed by computing a minimum spanning tree of theoriginal
terminals and these Steiner points.

@D Deletion of slack rows from LP tableau.

@LO / @LN This pair of messages is emitted every time the lower bound gets tighter.
They contain the CPU time and the old/new bound, as well as theold/new
gap percentages. These can be plotted (i.e., using gnuplot)to graphically
show the convergence rate of the algorithm.

@NC Creation of a new branch-and-bound node:

– Node number

– Parent node number

– Branch variable

152 4 STAND-ALONE PROGRAMS

– Branch direction

– Objective value (the real LP objective is at least this value)

@PAP Adding ”pending” pool constraints to the LP tableau.

@PL State of LP tableau constraints.

@PMEM Constraint pool memory status. Printed before and after each garbage col-
lection, and after adding new/initial constraints to the pool.

@r Experimental output from -R switch.

@RC Experimental output from -R switch.

@UO / @UN This pair of messages is emitted every time the upper bound gets tighter.
They contain the CPU time and the old/new bound, as well as theold/new
gap percentages. These can be plotted (i.e., using gnuplot)to graphically
show the convergence rate of the algorithm.

153

prunefst

Reduce the set of FSTs generated byefst, rfst or ufst while still retaining at
least one optimal solution among the remaining set of FSTs. This program can
reduce the time to solve the FST concatenation problem considerably, but is only
worthwhile for large instances. The following options are permitted:

-b Use linear space and logarithmic time lookup for BSDs.
-d txt Description of problem instance.
-t Print detailed timings to stderr.
-v N Generate the output in version N of the FST data format. Sup-

ported versions are 0, 1, 2 and 3. Version 3 is the default.
-Z P V Set parameter P to value V, e.g.-ZEPS MULT FACTOR 64

sets the epsilon multiplication factor to 64
(GST PARAM EPS MULT FACTOR = 64).

154 4 STAND-ALONE PROGRAMS

dumpfst

Dumps readable information about generated FSTs. There aretwo forms of this
command, each producing a different type of output. The firstform of the com-
mand is obtained whenever the-d or -h switches are used. These switches provide
summary informationonly — FST statistics, and/or a histogram of FST sizes:.

-d Display statistics about FSTs.
-h Display histogram of FST sizes.
-a Include all FSTs in histogram, even those that were “pruned”by

the FST generator or a pruning algorithm.

The second form of the command is obtained when neither-d nor-h are specified.
This form dumps all of the FSTs in a readable form. Each line ofoutput represents
a single FST, listing its terminal numbers (0 through N-1). The terminals are listed
in the same order that they occur in the actual data structures, although they can
optionally be sorted in numeric order. The length of each FSTcan optionally be
appended to each line:

-l Append the FST length to each output line.
-s Terminals of each FST are listed in numeric (sorted) order instead

of internal order.
-a Include all FSTs, even those that were “pruned” by the FST gen-

erator or a pruning algorithm.

155

plotfst

Program to generate various plots of FSTs in an FST data file. Reads the FST
data file on stdin and produces postscript on stdout for the plots indicated by the
command line switches:

-f Prints all FSTs, 12 FSTs per page.
-g Prints FSTs in “grouped” fashion, 12 groups per page.
-o Prints all FSTs overlaid together.
-p Prints only the points, no FSTs.

Note that the fileprelude.ps must beprepended to the output of this program
in order to have a complete postscript document.

156 4 STAND-ALONE PROGRAMS

fst2graph

Reads FSTs from stdin and produces an (ordinary) graph on stdout representing
the FSTs. For the rectilinear problem, the FSTs are overlaidon the Hanan grid
and the remaining Hanan grid is output. For the Euclidean problem the set of
all terminals and Steiner points in all FSTs forms the set of vertices and the line
segments form the edges. Output data is printed in the OR-library format by
default, but the SteinLib format is also supported:

-b N For version 4 output (STEINLIBINT), generate integer edge
weights as unsigned N-bit integers (default is N=64).

-d txt Description of problem instance.
-e Generate the edge graph for the rectilinear problem.
-u Output unscaled (fractional) data for the rectilinear problem.
-v N Generate version N format output.

REFERENCES 157

References

[1] A. B. Kahng and G. Robins. A New Class of Iterative SteinerTree Heuristics
with Good Performance.IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 11(7):893–902, 1992.

[2] B. K. Nielsen, P. Winter, and M. Zachariasen. An Exact Algorithm for the
Uniformly-Oriented Steiner Tree Problem. InProceedings of the 10th Euro-
pean Symposium on Algorithms, Lecture Notes in Computer Science, volume
2461, pages 760–772. Springer, 2002.

[3] J. S. Salowe and D. M. Warme. Thirty-Five-Point Rectilinear Steiner Mini-
mal Trees in a Day.Networks, 25(2):69–87, 1995.

[4] J. M. Smith, D. T. Lee, and J. S. Liebman. AnO(n logn) Heuristic for
Steiner Minimal Tree Problems on the Euclidean Metric.Networks, 11:23–
29, 1981.

[5] D. M. Warme. Spanning Trees in Hypergraphs with Applications to Steiner
Trees. Ph.D. thesis, Computer Science Dept., The University of Virginia,
1998.

[6] D. M. Warme, P. Winter, and M. Zachariasen. Exact Algorithms for Plane
Steiner Tree Problems: A Computational Study. In D.-Z. Du, J. M. Smith,
and J. H. Rubinstein, editors,Advances in Steiner Trees, pages 81–116.
Kluwer Academic Publishers, Boston, 2000.

[7] P. Winter. An Algorithm for the Steiner Problem in the Euclidean Plane.
Networks, 15:323–345, 1985.

[8] P. Winter and M. Zachariasen. Euclidean Steiner MinimumTrees: An Im-
proved Exact Algorithm.Networks, 30:149–166, 1997.

[9] M. Zachariasen. Rectilinear Full Steiner Tree Generation. Networks,
33:125–143, 1999.

[10] M. Zachariasen and P. Winter. Concatenation-Based Greedy Heuristics for
the Euclidean Steiner Tree Problem.Algorithmica, 25:418–437, 1999.

158 A LIBRARY PARAMETERS

A Library Parameters

The parameters in GeoSteiner are divided into five groups: FST generation pa-
rameters (Section A.1), LP solver parameters (Section A.2), hypergraph solver
algorithmic options (Section A.3), hypergraph solver stopping conditions (Sec-
tion A.4), and hypergraph solver input/output options (Section A.5).

Parameters are modified as described in Section 3.6. Each parameter is uniquely
identified by its macro name beginning with (GST PARAM). Below the effect of
each parameter is described. Also, the type of each parameter (double, int,
char* or gst channel ptr) and range of possible values are given.

A.1 FST generation parameters 159

A.1 FST generation parameters

GST PARAM MAX FST SIZE
int

Maximum size (number of terminals spanned) of generated FSTs.

Values
Any number greater than or equal to 2 (default:INT MAX).

GST PARAM INCLUDE CORNERS
int

Include corners of bent edges in FSTs in hypergraph embedding. Applies to rec-
tilinear and uniform-orientation metric FST generators. Including corners makes
the embedding easier to draw.

Values
GST PVAL INCLUDE CORNERS DISABLE 0 (default)
GST PVAL INCLUDE CORNERS ENABLE 1

GST PARAM EFST HEURISTIC
int

Heuristic used in the Euclidean FST generator: Smith-Lee-Liebman or Zachariasen-
Winter. The latter is slower but prunes more eq-points; it istherefore recom-
mended for large and/or difficult instances.

Values
GST PVAL EFST HEURISTIC SLL 0 (default)
GST PVAL EFST HEURISTIC ZW 1

GST PARAM EPS MULT FACTOR
int

160 A LIBRARY PARAMETERS

Epsilon multiplication factor F used in floating point comparisons. The maximum
relative error is expected to be at most F× DBL ESPILON.

Values
Any number greater than or equal to 1 (default: 32).

GST PARAM MULTIPLE PRECISION
int

Use GNU Multi-Precision arithmetic library (GMP) in the Euclidean FST gener-
ator in order to improve numerical precision of computed eq-points: 0: off; 1: use
GMP with 1 Newton iteration; 2: use GMP with 1 or more Newton iterations,
stopping when a convergence test indicates that 1/2 ULP of precision has been
obtained.

Values
GST PVAL MULTIPLE PRECISION OFF 0 (default)
GST PVAL MULTIPLE PRECISION ONE ITER 1
GST PVAL MULTIPLE PRECISION MORE ITER 2

GST PARAM INITIAL EQPOINTS TERMINAL
int

Number of eq-points initially allocated per terminal in theEuclidean FST genera-
tor. Although eq-point storage is added dynamically when needed, some large or
difficult instances run out of memory if the initial allocation is insufficient.

Values
Any number greater than or equal to 1 (default: 100).

GST PARAM BSD METHOD
int

Data structure for holding bottleneck Steiner distances (BSD). Either quadratic
space andconstant time lookup or linear space andlogarithmic time lookup. The
latter is recommended for very large instances.

A.1 FST generation parameters 161

Values
GST PVAL BSD METHOD CONSTANT 0 (default)
GST PVAL BSD METHOD LOGARITHMIC 1

162 A LIBRARY PARAMETERS

A.2 LP solver parameters

GST PARAM LP SOLVE PERTURB int

Use perturbations when solving LPs (only applicable when using lp solve as LP-
solver).

Values
GST PVAL LP SOLVE PERTURB DISABLE 0 (default)
GST PVAL LP SOLVE PERTURB ENABLE 1

GST PARAM LP SOLVE SCALE int

Use scaling when solving LPs (only applicable when using lpsolve as LP-solver).

Values
GST PVAL LP SOLVE SCALE DISABLE 0 (default)
GST PVAL LP SOLVE SCALE ENABLE 1

GST PARAM CPLEX MIN ROWS int

Force the LP solver allocation to be at least N rows (only applicable when using
CPLEX as LP-solver).

Values
Any non-negative number (default: 0).

GST PARAM CPLEX MIN NZS int

Force the LP solver allocation to be at least N non-zeros (only applicable when
using CPLEX as LP-solver).

Values
Any non-negative number (default: 0).

A.3 Hypergraph solver algorithmic options 163

A.3 Hypergraph solver algorithmic options

GST PARAM SOLVER ALGORITHM int

Hypergraph solver algorithm: Branch-and-cut, backtrack search, or chosen auto-
matically. Backtrack search is only applicable if the instance has 32 or fewer hy-
peredges. Also note that some stopping conditions — such as UB/LB gap — are
not feasible for backtrack search. The automatic algorithm uses backtrack search
when the instance is small (see parametersGST PARAM BACKTRACK MAX VERTS
andGST PARAM BACKTRACK MAX EDGES); furthermore, it switches to branch-
and-cut when the the backtrack limitGST PARAM MAX BACKTRACKS is hit.

Values
GST PVAL SOLVER ALGORITHM AUTO 0 (default)
GST PVAL SOLVER ALGORITHM BRANCH AND CUT 1
GST PVAL SOLVER ALGORITHM BACKTRACK SEARCH 2

GST PARAM NUM FEASIBLE SOLUTIONS int

Number N of stored feasible solutions (top N solutions). A value of N for this
parameter instructs the solver to retain the N best feasiblesolutions discovered.

Values
Any number greater than or equal to 1 (default: 1).

GST PARAM BRANCH VAR POLICY int

Branch variable policy. 0: naive max of mins, 1: smarter lexicographic max of
mins, 2: product of improvements; 3: weak branching. All policies except the last
one use strong branching.

Values
GST PVAL BRANCH VAR POLICY NAIVE 0

164 A LIBRARY PARAMETERS

GST PVAL BRANCH VAR POLICY SMART 1 (default)
GST PVAL BRANCH VAR POLICY PROD 2
GST PVAL BRANCH VAR POLICY WEAK 3

GST PARAM CHECK BRANCH VARS THOROUGHLY
int

Search N times more thoroughly for strong branching variables.

Values
Any number from 1 to 1000 (default: 1).

GST PARAM TARGET POOL NON ZEROS
int

Target number of pool non-zeros; target is computed automatically when value is
zero.

Values
Any non-negative number (default: 0).

GST PARAM SEED POOL WITH 2SECS
int

This parameter controls whether or not to seed the initial constraint pool with all 2-
terminal Subtour Elimination Constraints (SECs). Most problems have relatively
few of these, but some problems (such as those with many edgescontaining a
large number of vertices) can blow up unless this is disabled.

Values
GST PVAL SEED POOL WITH 2SECS DISABLE 0
GST PVAL SEED POOL WITH 2SECS ENSABLE 1 (default)

GST PARAM INITIAL UPPER BOUND
double

A.3 Hypergraph solver algorithmic options 165

Value of initial upper bound for problem being solved.

Values
Any number (default:DBL MAX).

GST PARAM CHECK ROOT CONSTRAINTS int

When the optimal root LP relaxation is obtained, determine for each LP iteration
the number of final constraints whose first violation occurred during that iteration.
This option creates a temporary file to hold the LP solution vector from each
iteration. This file can grow very large.

Values
GST PVAL CHECK ROOT CONSTRAINTS DISABLE 0 (default)
GST PVAL CHECK ROOT CONSTRAINTS ENABLE 1

GST PARAM LOCAL CUTS MODE int

Local cuts mode: 0: disable local cuts; 1: apply local cuts only when no sub-
tour violation exists; 2: apply local cuts to congested components that contain no
subtour violations; 3: apply local cuts in both cases.

Values
GST PVAL LOCAL CUTS MODE DISABLE 0 (default)
GST PVAL LOCAL CUTS MODE SUBTOUR RELAXATION 1
GST PVAL LOCAL CUTS MODE SUBTOUR COMPONENTS 2
GST PVAL LOCAL CUTS MODE BOTH 3

GST PARAM LOCAL CUTS MAX VERTICES int

Local cuts will not be attempted for any subproblem having more than this number
of vertices.

Values
Any number from 0 to 80 (default: 80).

GST PARAM LOCAL CUTS MAX EDGES

166 A LIBRARY PARAMETERS

int

Local cuts will not be attempted for any subproblem having more than this number
of edges.

Values
Any number from 0 to 256 (default: 256).

GST PARAM LOCAL CUTS VERTEX THRESHOLD
double

A threshold valueα that prohibits local cuts on any fractional componentC =
(V ′, E ′) of a parent problemH = (V, E) unless|V ′| < α ∗ |V |.

Values
Any number from 0 to 1 (default: 0.75).

GST PARAM LOCAL CUTS MAX DEPTH
int

Maximum recursive depth of local cuts. 0: disable local cuts; 1: enable local cuts
with no recursion; 2: enable local cuts with two recursive levels. -1: enable local
cuts with recursion to any depth.

Values
GST PVAL LOCAL CUTS MAX DEPTH DISABLE 0
GST PVAL LOCAL CUTS MAX DEPTH ONELEVEL 1 (default)
GST PVAL LOCAL CUTS MAX DEPTH TWOLEVELS 2
GST PVAL LOCAL CUTS MAX DEPTH ANYLEVEL -1

GST PARAM LOCAL CUTS TRACE DEPTH
int

Tracing of local cuts. 0: do not trace local cuts or their recursive invocations;
1: trace first level of local cuts; 2: trace first two levels of local cuts; -1: trace any
level of local cuts.

A.3 Hypergraph solver algorithmic options 167

Values
GST PVAL LOCAL CUTS TRACE DEPTH DISABLE 0 (default)
GST PVAL LOCAL CUTS TRACE DEPTH ONELEVEL 1
GST PVAL LOCAL CUTS TRACE DEPTH TWOLEVELS 2
GST PVAL LOCAL CUTS TRACE DEPTH ANYLEVEL -1

GST PARAM MAX CUTSET ENUMERATE COMPS int

Controls the behavior of the zero-weight cutset separationalgorithm, which looks
for multiple connected components. If the numberN of connected components
does not exceed this threshold, then the separator generates one cutset constraint
for each of the2N −2 possible combinations of connected components (excluding
the two combinations that take all or none of the components). This parameter
controls an exponential process, so setting it too high can easily swamp the solver
with constraints.

Values
Any number from 0 to 11 (default: 11)

GST PARAM SEC ENUM LIMIT int

Congested components having at most this number of verticesare exhaustively
searched to find all violated subtour elimination constraints. A component with
N vertices has2N−N−1 possible subtour elimination constraints. This parameter
therefore controls an exponential process — setting it too high can easily swamp
the solver with constraints or increase runtime.

Values
Any number from 0 to 16 (default: 10)

GST PARAM BACKTRACK MAX VERTS int

Backtrack search should only be attempted for solving MST inhypergraph prob-
lem when the number of vertices is smaller than this value.

168 A LIBRARY PARAMETERS

Values
Any number from 0 to 32 (default: 8).

GST PARAM BACKTRACK MAX EDGES
int

Backtrack search should only be attempted for solving MST inhypergraph prob-
lem when the number of edges is smaller than this value.

Values
Any number from 0 to 32 (default: 12).

GST PARAM MAX BACKTRACKS
int

Maximum number of distinct partial solution nodes to enumerate during a single
run of the backtrack search algorithm. Note that if this limit is hit, the solver might
exit without having found an optimal solution.

Values
Any non-negative number (default: 10000).

A.4 Hypergraph solver stopping conditions 169

A.4 Hypergraph solver stopping conditions

GST PARAM CPU TIME LIMIT double

CPU time limit for solver (in seconds); when the limit is zero, no CPU time limit
is imposed.

Values
Any non-negative number (default: 0).

GST PARAM GAP TARGET double

Exit solver when ratio UB/LB between the upper bound (UB) andthe lower bound
(LB) is less than or equal to this threshold; e.g., if target is 1.01, the solver stops
when a solution within 1% from the optimum has been found.

Values
Any number greater than or equal to 1 (default: 1).

GST PARAM UPPER BOUND TARGET double

Exit solver when a feasible solution whose length is at most this value is found.

Values
Any number (default:-DBL MAX).

GST PARAM LOWER BOUND TARGET double

Exit solver when the lower bound becomes greater than or equal to this value.

Values
Any number (default:DBL MAX).

GST PARAM MAX FEASIBLE UPDATES

170 A LIBRARY PARAMETERS

int

Exit solver when N feasible solution updates have been made (zero means no
limit). A feasible update is either an insertion of a solution of any quality into
the (non-full) set of solutions, or a replacement of an inferior solution with an
improved solution in the (full) set of solutions. The size ofthe solution set is
specified using parameterGST PARAM NUM FEASIBLE SOLUTIONS.

Values
Any non-negative number (default: 0).

A.5 Hypergraph solver input/output options 171

A.5 Hypergraph solver input/output options

GST PARAM SAVE FORMAT int

Format used bygst hg save()when saving a hypergraph to a file: 0: OR-library
format; 1: SteinLib format; 2: GeoSteiner FST format version 2; 3: GeoSteiner
FST format version 3; 4: SteinLib format with integer edge weights.

Values
GST PVAL SAVE FORMAT ORLIBRARY 0
GST PVAL SAVE FORMAT STEINLIB 1
GST PVAL SAVE FORMAT VERSION2 2
GST PVAL SAVE FORMAT VERSION3 3 (default)
GST PVAL SAVE FORMAT STEINLIB INT 4

GST PARAM SAVE INT NUMBITS int

Number of bits of precision to use in final integer edge weights when using
gst hg save() to save hypergraphs having Euclidean metric problems in “inte-
ger” SteinLib format (GST PARAM SAVE FORMAT set to
GST PVAL SAVE FORMAT STEINLIB INT).

Values
Value must be at least 32. Default value is 64.

GST PARAM GRID OVERLAY int

Used by functiongst hg to graph() to specify that the edges of the reduced grid
graph rather than individual edges of the embedding should be returned (only
applicable for the rectilinear metric).

Values
GST PVAL GRID OVERLAY DISABLE 0
GST PVAL GRID OVERLAY ENABLE 1 (default)

GST PARAM DETAILED TIMINGS CHANNEL

172 A LIBRARY PARAMETERS

gst channel ptr

Detailed timing is written to this channel.

Values
Any valid channel pointer (default:NULL).

GST PARAM PRINT SOLVE TRACE
gst channel ptr

Solver output trace is written to this channel.

Values
Any valid channel pointer (default:NULL).

GST PARAM CHECKPOINT FILENAME
char*

Pathname P of checkpoint file to restore (if present) and/or update. The files
are actually named P.chk and P.ub, with temporary files namedP.tmp, P.new and
P.nub.

Values
Any valid pathname (default:NULL).

GST PARAM CHECKPOINT INTERVAL
double

Perform checkpointing of solver process at a time interval (in seconds) given by
this parameter.

Values
Any number between 0 and 1000000 (default: 3600). A value of 0means that no
checkpointing should be performed.

GST PARAM MERGE CONSTRAINT FILES

A.5 Hypergraph solver input/output options 173

char*

A colon-separated list of pathnames of checkpoint files. Allconstraints from the
constraint pool of each listed checkpoint file are merged into the solver’s con-
straint pool before solving the current hypergraph problem.

Values
A colon-separated list of pathnames of checkpoint files (default: NULL).

174 B HYPERGRAPH PROPERTIES

B Hypergraph Properties

The following table shows the properties currently accessible in a hypergraph in-
stance. Read more about properties in Section 3.8.

Property Value
GST PROPHG HALF FST COUNT 10000
GST PROPHG GENERATION TIME 20000
GST PROPHG MST LENGTH 20001
GST PROPHG PRUNING TIME 20002
GST PROPHG INTEGRALITY DELTA 20003
GST PROPHG NAME 30000

175

C Solver Properties

The following table shows the properties currently accessible in a solver object.
Read more about properties in Section 3.8.

Property Value
GST PROPSOLVER ROOT OPTIMAL 11000
GST PROPSOLVER ROOT LPS 11001
GST PROPSOLVER NUM NODES 11002
GST PROPSOLVER NUM LPS 11003
GST PROPSOLVER INIT PROWS 11004
GST PROPSOLVER INIT PNZ 11005
GST PROPSOLVER INIT LPROWS 11006
GST PROPSOLVER INIT LPNZ 11007
GST PROPSOLVER ROOT PROWS 11008
GST PROPSOLVER ROOT PNZ 11009
GST PROPSOLVER ROOT LPROWS 11010
GST PROPSOLVER ROOT LPNZ 11011
GST PROPSOLVER FINAL PROWS 11012
GST PROPSOLVER FINAL PNZ 11013
GST PROPSOLVER FINAL LPROWS 11014
GST PROPSOLVER FINAL LPNZ 11015
GST PROPSOLVER LOWER BOUND 11016
GST PROPSOLVER CPU TIME 21000
GST PROPSOLVER ROOT TIME 21001
GST PROPSOLVER ROOT LENGTH 21002

176 D ERROR CODES

D Error Codes

Error Code Value
GST ERR UNDEFINED 1000
GST ERR LIBRARY CLOSED 1001
GST ERR PROPERTYNOT FOUND 1002
GST ERR PROPERTYTYPE MISMATCH 1003
GST ERR BACKTRACK OVERFLOW 1004
GST ERR SOLUTION NOT AVAILABLE 1005
GST ERR RANK OUT OF RANGE 1006
GST ERR INVALID METRIC 1007
GST ERR NO EMBEDDING 1008
GST ERR ALREADY CLOSED 1009
GST ERR LP SOLVER ACTIVE 1010
GST ERR LOAD ERROR 1011
GST ERR INVALID NUMBER OF TERMINALS 1012
GST ERR PARAMETER VALUE OUT OF RANGE 1013
GST ERR UNKNOWN PARAMETER ID 1014
GST ERR INVALID PROPERTYLIST 1015
GST ERR INVALID HYPERGRAPH 1016
GST ERR INVALID NUMBER OF VERTICES 1017
GST ERR INVALID NUMBER OF EDGES 1018
GST ERR INVALID EDGE 1019
GST ERR INVALID VERTEX 1020
GST ERR INVALID DIMENSION 1021
GST ERR NO STEINERSALLOWED 1022
GST ERR INVALID CHANNEL 1023
GST ERR INVALID CHANNEL OPTIONS 1024
GST ERR INVALID PARAMETERS OBJECT 1025
GST ERR INVALID PARAMETER TYPE 1026
GST ERR EFST GENERATOR DISABLED 1029
GST ERR RFST GENERATOR DISABLED 1030
GST ERR UFST GENERATOR DISABLED 1031
GST ERR FST PRUNER DISABLED 1032

177

E FST Data File Formats

The FST generators produce output called FST data files. (They are sometimes
called “phase 1 data files”, since FST generation is the first phase of the two-phase
process for computing Steiner trees.

FST data files come in three different formats, distinguished by version numbers.
Currently there are three such formats corresponding to versions 0, 2 and 3 of the
FST data format. (Version 1 is very obsolete, and no longer supported.)

Note that version 0 and 3 data formats can be used to describe Steiner tree in graph
(or hypergraph) instances. However, GeoSteiner 5.1cannot solve such problems.
It blindly assumes all vertices are terminals. If given suchan instance, GeoSteiner
will produce the MST (i.e., the minimum tree spanningall vertices, be they ter-
minals, Steiner vertices, or any mixture thereof.)

Version 0

Version 0 is used to represent an abstract MST or Steiner treein graph or hyper-
graph problem instance. It is essentially the same format asused in Beasley’s
“OR-library” – but extended slightly to handle hypergraph instances as well as
graph instances. The OR-library format is as follows:

<Number of vertices N> <Number of edges M>
For each edge:

<Vertex 1> <Vertex 2> <Edge cost>
<Number of terminal vertices K>

<Terminal 1> <Terminal 2> ... <Terminal K>

Vertices are numbered 1 through N. Each<Terminal i> is the vertex number
of a vertex that is a terminal (i.e., must be connected). The<Edge cost>’s are
real numbers.

We extend this format slightly by permitting each edge to have twoor more ver-
tices. In exchange for this flexibility, we require the entire description of each
edge to reside on a single line of the data file. Therefore, thefinal number on each
line represents the hyperedge cost, and all preceding numbers on the line represent
the vertices of the hyperedge.

178 E FST DATA FILE FORMATS

Version 2

Version 2 is used primarily to represent geometric FSTs (Euclidean or rectilinear),
although it can also handle non-geometric (graph) instances. It is unable, however,
to represent Steiner trees in hypergraph problems, becauseit assumes every vertex
is a terminal.

In the following description, fields enclosed in<<...>> are omitted when the
Metric is Graph. The format is as follows:

<Version Number: literally "V2">
<Instance description (free text)>
<Metric: 1 = Rectilinear, 2 = Euclidean, 3 = Graph>
<Number of terminals (N)>
<<Decimal length of MST>> <<Hex length of MST>>
<<Number of duplicate terminal groups (ndg)>>
<Coordinate/length scaling factor>
<Machine description (free text)>
<Front-end CPU-time (1/100s of a second (integer number)>
<Number of hyperedges/FSTs (M)>
For each terminal:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>
For each duplicate terminal group:

<<Number of duplicate terminals>>
<<Terminal indices (1..N), on one line separated by spaces>>

For each hyperedge/FST:
<Number of terminals (Ni)>
<Terminal indices (1..N), on one line separated by spaces>
<Decimal length of hyperedge/FST> <Hex length of hyperedge/FST>
<<Number of Steiner points (Mi)>>
For each Steiner point:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>
<<Number of FST edges (Ki)>>
For each FST edge:

<<endpoint-1>> <<endpoint-2>>
<FST status: 0 = never needed, 1 = maybe needed, 2 = always needed>
<Number of incompatible FSTs>
<Incompatible FST indices (1..M), on one line separated by spaces>
<Number of concatenation terminals>
<Conc. terminals indices (1..N), on one line separated by spaces>

179

Version 3

Version 3 is the default format, and represents geometric FSTs (Euclidean or rec-
tilinear) as well as graph instances. Since it separately specifies each vertex to
be either a terminal or Steiner vertex, it can also representSteiner problems in
graphs/hypergraphs. A number of obsolete fields from version 2 is omitted, how-
ever.

In the following description, fields enclosed in<<...>> are omitted when the
Metric is Graph. The format is as follows:

<Version Number: literally "V3">
<Instance description (free text)>
<Metric: 1 = Rectilinear, 2 = Euclidean, 3 = Graph>
<Number of terminals (N)>
<<Decimal length of MST>> <<Hex length of MST>>
<Coordinate/length scaling factor>
<Decimal Integrality delta> <Hex Integrality delta>
<Machine description (free text)>
<Front-end CPU-time (1/100s of a second (integer number)>
<Number of hyperedges/FSTs (M)>
For each terminal:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>
For each terminal:

<Terminal/Steiner flag: 0=Steiner, 1=Terminal>
For each hyperedge/FST:

<Number of terminals (Ni)>
<Terminal indices (1..N), on one line separated by spaces>
<Decimal length of hyperedge/FST> <Hex length of hyperedge/FST>
<<Number of Steiner points (Mi)>>
For each Steiner point:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>
<<Number of FST edges (Ki)>>
For each FST edge:

<<endpoint-1>> <<endpoint-2>>
<FST status: 0 = never needed, 1 = maybe needed, 2 = always needed>
<Number of incompatible FSTs>
<Incompatible FST indices (1..M), on one line separated by spaces>

180 E FST DATA FILE FORMATS

The following conventions are observed in versions 2 and 3 ofthe FST data file
format:

• Data input routines require only that the individual data fields are separated
by one or more white-space characters (space, tab, newline,vertical tab, and
form-feed are the white-space characters of ANSI C).

• Data output routines shall align items according to the schema above:

– Schema fields that appear on separate lines shall be written on separate
lines.

– Schema fields that are all on one line shall be written all on one line.

– The data shall be indented as shown by the schema.

– Each indentation level shall be one “tab stop”.

– The implementor may freely choose the width of this “tab stop”.

• The<Instance description (free text)> and<Machine description

(free text)> fields shall each be a sequence of 0 to 79 characters. Each
character in the sequence may be any printable ASCII character except new-
line.

• The <on one line separated by spaces> fields are permitted to span
several lines, so long as the additional lines are each indented an additional
“tab stop”. The intent of this splitting is to fully pack lines without exceed-
ing some column limit (e.g., 80 columns). If no data is to appear then the
line is removed completely.

• All decimal fields shall beunscaled – just as in the original terminal coor-
dinate input data.

• The hexadecimal fields shall bescaled. For example suppose that the<Coordinate
scaling factor> is K. Then the following relationship is implied:

<Dec X-coord> = <Hex X-coord> / 10**K

where the equal sign is meant to imply “is within epsilon of”.Scaling of
data shall be at the discretion of the FST generator. For example the FST
generator is permitted to always specify a scaling factor ofzero – thereby
disabling the scaling feature. Programs that read FST data files should not
assume that the hex-values (scaled or otherwise) are all integral without first
verifying the actual data values.

181

• The<Decimal Integrality delta> (<Hex Integrality delta>) fields
represent anunscaled (scaled) lower bound on the amount by which two
solutions of different lengths must differ. For Euclidean FSTs, this must
always be 0. For rectilinear FSTs scaled to integer lengths this would be
1 (scaled value). For graphs with integer weights, this can also be 1. The
branch-and-cut can use this to provide earlier cutoff of nodes that cannot
reduce the upper bound.

• Let fields<endpoint-1> and<endpoint-2>, occur within an FST contain-
ing N terminals andM Steiner points. Let the field value beJ . Then the
interpretation of the endpoint field is as follows:

1 ≤ J ≤ N =⇒ endpoint is theJ th terminal in the FST’s list of terminals.

−M ≤ J ≤ −1 =⇒ endpoint is the−J th Steiner point in the FST’s list of
Steiner points.

• (only applicable for version 2 of the FST data file format)
Duplicate terminal groups (DTGs) identify subsets of the vertices having
identical coordinates:

– The size of each DTG shall be at least 2.

– Each terminal may be listed in at most one DTG.

– The terminal indices listed in a single DTG must be distinct.

– The first terminal in each duplicate terminal group shall be referenced
by at least one FST (having FST status6= 0).

– The remaining terminals in each duplicate terminal group shall NOT
be referenced by any FST (having FST status6= 0).

• If an FST has “never needed” status then the FST generator mayoutput
any incompatibility and concatenation terminal information,including no
information at all (such information is redundant).

• The incompatible information shall NOT include the FST itself.

• The incompatible information need not include FSTs which are “never needed”.

• The incompatible information need not include FSTs which share two or
more terminals. It is assumed that programs that read FST data files are
smart enough to know about such basic incompatibilities already. Omitting
such incompatibilities can significantly reduce the size ofthe data file.

182 E FST DATA FILE FORMATS

• The FST-graph for rectilinear FSTs must always be a “left-most” and “top-
most” Hwang topology. If not, such FSTs will not appear to be Hwang
topologies when plotted.

• A simple top-down traversal of each Euclidean FST-graph starting from the
first terminal must yield the recursive equilateral-point structure of the FST.
In this way, programs that read Euclidean FST data files are able to correctly
compute the exact length of each FST in terms of algebraic numbers, if
desired.

Index
gst attachcplex, 26
gst channeladd file, 123
gst channeladd functor, 124
gst channelgetopts, 121
gst channelprintf, 128
gst channelrmdest, 126
gst channelsetopts, 122
gst channelwrite, 127
gst close geosteiner, 20
gst close lpsolver, 24
gst computescale info digits, 133
gst copy hg, 77
gst copy hg edges, 78
gst copy metric, 58
gst copy param, 37
gst copy proplist, 64
gst createchannel, 119
gst createhg, 76
gst createmetric, 56
gst createparam, 36
gst createproplist, 62
gst createscale info, 130
gst createsolver, 110
gst deleteproperty, 66
gst deliver signals, 139
gst detachcplex, 27
gst distance, 59
gst esmt, 30
gst free channel, 120
gst free hg, 79
gst free metric, 57
gst free param, 38
gst free proplist, 63
gst free scale info, 131
gst free solver, 111

gst generateefsts, 105
gst generatefsts, 104
gst generateofsts, 107
gst generaterfsts, 106
gst get chn param, 51
gst get dbl param, 40
gst get dbl property, 67
gst get hg edgeembedding, 93
gst get hg edgestatus, 97
gst get hg edges, 88
gst get hg metric, 99
gst get hg numberof vertices, 87
gst get hg one edge, 90
gst get hg one edgeembedding, 95
gst get hg one vertex embedding, 92
gst get hg properties, 101
gst get hg scale info, 100
gst get hg terminals, 86
gst get hg vertex embedding, 91
gst get int param, 44
gst get int property, 68
gst get metric info, 60
gst get paramid, 52
gst get paramtype, 53
gst get points, 132
gst get properties, 71
gst get property type, 65
gst get solver properties, 117
gst get solver status, 114
gst get str param, 48
gst get str property, 69
gst hg prune edges, 108
gst hg solution, 115
gst hg solve, 112
gst hg to graph, 102

183

184 INDEX

gst hgmst, 33
gst load hg, 136
gst lpsolver version string, 25
gst open geosteiner, 19
gst open lpsolver, 23
gst osmt, 32
gst query dbl param, 41
gst query int param, 45
gst rsmt, 31
gst savehg, 137
gst set chn param, 50
gst set dbl param, 39
gst set dbl property, 72
gst set hg edgeweights, 82
gst set hg edges, 81
gst set hg metric, 84
gst set hg numberof vertices, 80
gst set hg scale info, 85
gst set hg vertex embedding, 83
gst set int param, 43
gst set int property, 73
gst set param, 54
gst set str param, 47
gst set str property, 74
gst smt, 29
gst unscaleto double, 135
gst unscaleto string, 134
gst version, 22
gst version string, 21

