GeoSteiner 5.2

User's Guide and Reference Manual

Copyright(© 2004, 2022 by David M. Warme, Pawel Winter and Martin Zacsen.

This work is licenced under a Creative Commons
Attribution-NonCommercial 4.0 International License.

Contents

1 Introduction 1
1.1 Steinertreeproblems 2
1.2 Callablelibrary 2
1.3 Stand-aloneprograms 4
1.4 Historic note and literature 4
2 Callable Library User’s Guide 6
2.1 High-levelinterfaces 6
2.2 Low-levelinterfaces. L. 8
2.3 Algorithmic callback functions 11
3 Callable Library Functions 14
3.1 Application programminginterface 14
3.2 Designoflibrary, 14
3.3 Libraryobjects 15
3.3.1 GeoSteinerenvironment 15
3.3.2 Parameterset 15
3.3.3 Probleminstance, 15
3.3.4 Problemsolutionstate 16
3.3.5 Auxiliaryobjects o oL 16
3.4 Opening and closing GeoSteiner environment 18
3.5 High-level optimization functions 28
3.6 Parameter setting and querying functions.35
3.7 Metric setting and querying functions 55
3.8 Property list setting and querying functions 61
3.9 Hypergraphfunctions 75
3.10 FST generation and pruning functions 103
3.11 Hypergraph optimization functions 109
3.12 Optimization callback functions 120
3.13 Message handling functions 135
3.14 Inputand outputfunctions 146
3.15 Miscellaneous functions 155
4 Stand-Alone Programs 157

References 174

o O @

m

Library Parameters

A.1 FST generation parameters

A.2 LP solver parameters

A.3 Hypergraph solver algorithmicoptions
A.4 Hypergraph solver stopping conditions
A.5 Hypergraph solver input/output options

Hypergraph Properties
Solver Properties
Error Codes

FST Data File Formats

195

196

197

ii
Preface

This manual documents GeoSteiner version 5.2 — an optiraizabftware pack-
age for solving Steiner tree problems. GeoSteiner versidmwés a proprietary
commercial product, that was released in substantiallgtidal form under an
open source form beginning with version 5.0. GeoSteinesionl3.1 is still avail-
able fromwww. geost ei ner. comunder an academic license, but is no longer
supported.

Version 5.2 contains significant improvements over the iptes/version (Geo-
Steiner 3.1); these improvements are both functional andtstral. By far the

largest structural change is that the core optimizatioorélgms have now been
encapsulated into a library of callable subroutines. Théatjy facilitates the in-
corporation of GeoSteiner into other applications. Indeled old familiar stand-
alone programs from version 3.1 have now been completeimpéemented to

use only the documented library interfaces. The abilityde tunction calls in-

stead of program calls from applications provides for mdfieient solution of

(large) series of problem instances; such applicationsirotequently in, e.g.,

VLSI layout. In addition, the library interfaces providesgter control of the so-
lution process when needed.

The authors would like to thank Benny K. Nielsen, who has liberprogrammer
on the callable library project. In addition, Benny has tenta major part of the
new FST generator for uniformly-oriented Steiner trees.

Copenhagen/Washington, January 2017

David M. Warme
Pawel Winter
Martin Zachariasen

1 Introduction

GeoSteiner is a software package for solving Steiner treel@ms. The package
currently solves the following NP-hard problems in the plan

e Euclidean Steiner tree problem.
¢ Rectilinear Steiner tree problem.

¢ Uniformly-oriented Steiner tree problem (including heaagl and octilin-
ear Steiner tree problems).

In addition, the package gives the user access to a poweltdrdor

e Minimum spanning tree in hypergraph (MSTHG) problem.

The solver for this NP-hard problem is used as a subroutitieaisolution of the
above geometric problems.

GeoSteiner is written in ANSI C. The code makes heavy usenefli program-
ming (LP); the public domain LP-solvép_sol ve is included (in a significantly
modified form). However, the package also suppGREEX, a proprietary prod-
uct of IBM Inc., which is perhaps the fastest and most robissblver available.
The authors of GeoSteiner strongly recommend that you us&EKH at all pos-
sible — especially for production applications or publidleemputational studies.
The core callable library requires no supplementary sottvea libraries (except
the CPLEX library if GeoSteiner is configured to use CPLEXta4. P solver).

In this introductory section we first define the problems #rat solved by Geo-
Steiner, and give some fundamental definitions and acronysed throughout
this manual (Section 1.1). Then an introduction to the b#&léibrary and associ-
ated stand-alone problems is given (Sections 1.2 and 1/l we give some
historic background on GeoSteiner in Section 1.4.

!Problem definitions are given in Section 1.1.

2 1 INTRODUCTION

1.1 Steiner tree problems

Given a metric and a (finite) set of points in the plane, alswotkd terminals, a
Seiner minimum tree (SMT) is a shortest possible interconnection of the termi-
nals. This interconnection must be a tree, and may contaictippns that are not
among the terminals, so-call&keiner points. In Figure 1 we show four differ-
ent SMTs for the same set of terminals. These are SMTs unddtuklidean,
rectilinear, hexagonal and octilinear metric, respettive

All metrics currently handled by GeoSteiner argformly oriented metrics: Given
a set ofA > 2 uniformly oriented directions in the plane, the distancsveen two
points is defined to be the length of a shortest path in whidinalsegments have
one of the given directions. As special cases we have thdimear (\ = 2),
hexagonal X = 3), octilinear ¢\ = 4) and EuclideanX = co) metric.

If we break an SMT at all terminals having two or more incidedges, each
component will be a so-callefll Seiner tree (FST). These are trees in which
all terminals are leaves. The fact that the number of terlmimaeach FST in an
SMT usually is small is what makes it possible to solve langdbfem instances to
optimality. More specifically, the algorithms employed bgdsteiner first gen-
erate a set of FSTs known to contain an SMT as a subset, andhhemortest
possible union of FSTs interconnecting all terminals iesteld; we say that the
FSTs are concatenated. The concatenation problem is ¢égpiiva finding amin-
imum spanning tree in a hypergraph (problem MSTHG). An efficient solver for
this subproblem forms a cornerstone of GeoSteiner.

1.2 Callable library

The kernel of GeoSteiner is the callable library. Both higbel and low-level
interfaces are provided. Also included are powerful raegifor manipulating var-
ious algorithmic parameters, handling messages, andsacggwsoblem instance
data in various formats.

The high-level interfaces give the user easy access to tie algorithms in the
library. Problem instances are given as simple arrays, b@dunctions return
optimal solutions to the problem instances.

Low-level interfaces are provided for users who need mongrobover the solu-

1.2 Callable library 3

Euclidean SMT: 20 points, length = 30213.19418714918, 0.02 seconc Rectilinear SMT: 20 points, length = 34767, 0.00 seconds

Hexagonal SMT: 20 points, length = 32447.53363589430, 0.01 secon Octilinear SMT: 20 points, length = 31382.81130634991, 0.01 second

Figure 1: SMTSs for the same set of terminals under differegtirics (output from
GeoSteiner).

4 1 INTRODUCTION

tion process. Also, the low-level interfaces are used bystard-alone programs
that accompany the callable library. For more details ord#s@gn and structure
of the callable library, please consult the user’s guidedati®n 2 and the callable
library reference manual in Section 3.

1.3 Stand-alone programs

The stand-alone programs are provided for users who wakdddi solve Steiner

tree problems without writing their own application progi For example, if

the coordinates of the given problem instance are given ileatfie stand-alone
programs give the user the opportunity to solve the instandanake a postscript
plot of the solution. A complete list of all stand-alone praxgs, including docu-

mentation of their invocation options, and examples ofrthse are given in Sec-
tion 4.

1.4 Historic note and literature

To the best knowledge of the authors, as of January 2017, t€GieeSrepresents
the computational state of the art for geometric Steiner preblems in the plane
under each of the following metrics:

e Euclidean
e Rectilinear

e Uniformly oriented metrics

Furthermore, GeoSteiner has held this dominant positionimaously since at
least 1998. During the1® DIMACS Implementation Challenge (December,
2015) no other algorithms world-wide were entered into ahyhese problem
categories. (Because GeoSteiner was only entrant in eablesd# categories, no
competition was performed — which is why GeoSteiner doesappear in any
of the official DIMACS 11 competition results.)

The “GeoSteiner” name was coined (and is therefore “ownbkbyPawel Winter,
whose seminal program GEOSTEINER started it all back in J985In 1996
Winter and Zachariasen published an improved algorithted&GeoSteiner96” [8].

1.4 Historic note and literature 5

On the other hand, Warme’s first Steiner tree code was thevBaldarme algo-
rithm in 1993, which used backtrack search to concatenatdimear FSTs [3].
In 1998, Warme’s Ph.D. dissertation [5] described a newdiraand-cut code for
finding minimum spanning trees in arbitrary hypergraphs —ctvlwas applied
to the FST concatenation problem for both rectilinear andiean FSTs.

The first distribution of the combined code therefore regnésd the “third ver-
sion” of each group’s code, and it was thus named GeoStearsion 3.0. This
and subsequent versions continue that naming convention.

The algorithms in GeoSteiner 3.0 are based on those dedénipe, 8, 9].

GeoSteiner 4.0 was a proprietary commercial product winitbduced the callable
library interfaces, and support for solving uniformly-@mted Steiner trees [2]. In
addition, a number of minor improvements were made througtie code.

Upon termination of commercial operations in 2015, the Geio®r code was
released once again in open source form as GeoSteinerwvérficand its various
successors.

6 2 CALLABLE LIBRARY USER’'S GUIDE
2 Callable Library User’s Guide

In this section we give a number of examples of using the loidlabrary. We
start with a few simple uses of the high-level functions ntineove to the low-
level interfaces, and finally, we discuss the use of calllfanktions.

2.1 High-level interfaces

Any application program that uses the GeoSteiner librargtimclude the Geo-
Steiner header filgeost ei ner . h. Furthermore, the GeoSteiner environment
must be opened using the functigst.open_geosteiner()as described in Sec-
tion 3.4 on page 18.

Our first example, shown in Figure 2, computes an Euclideail &vithe points
(0,0), (0,1), (1,0) and(1,1). After having successfully opened the GeoSteiner
environment, we use the high-level functigst_esmt()to compute the SMT (see
page 30). As arguments we first pass the number of terminais,4) and then a
double arrayerms that holds the terminal point coordinates. Then follow tag-v
abledength, nspsandsps in which the length of the computed SMT, the number
of Steiner points and the coordinates of the Steiner poiiltde returned. The
remaining arguments tgst.esmt() are all given as NULL, causing correspond-
ing inputs to assume default values, and correspondingutsitp be ignored; in
particular the edges of the optimal solution and the sahgiatus are all ignored,
and default values are assumed for all GeoSteiner parasneter

In the program we assume thggt esmt() returns successfully — the return code
is not checked — and then we print the length of the SMT andtthe)(Steiner
points. Finally, we close the GeoSteiner environment aeptiogram ends. We
encourage you to run tleenol program that comes with the GeoSteiner distri-
bution.

Our next examplegdenn2, computes a series of SMTs for randomly generated
points sets (Figure 3). This program has two command linarpaters: Firstly,
the A-value for the uniformly oriented metric that is to be used -heve\ = 0 is
defined to be the Euclidean metric; secondly, the requiredman excess from
optimum in percent. As an exampleléno2 4 1” computes Steiner trees using
the octilinear metric whose length are at mo&tfrom optimum.

2.1 High-level interfaces 7

#i ncl ude "geosteiner.h"
#include "stdlib.h"

int main (int argc, char** argv)
{
doubl e terns [8] = {

PR OO
rOPRO

int i, nsps;
doubl e I ength, sps [4];

/+* Open GeoSteiner environment =/

if (gst_open_geosteiner () !'=0) {
printf ("Could not open GeoSteiner.\n");
exit (1);

}

[+ Conpute Euclidean Steiner tree */
gst _esnt (4, terns, & ength, &nsps, sps, NULL, NULL, NULL, NULL);

/+ Display informati on about solution */
printf ("Steiner tree has length %\n", |length);

for (i =0; i < nsps; i++) {

printf ("Steiner point: (%, %)\n", sps[2xi], sps[2xi+1]);
}
/+ Cl ose GeoSteiner environment =/

gst _cl ose_geosteiner ();

exit (0);

Figure 2: Demo program that computes an Euclidean SMT for ferminals
(demol.c)

8 2 CALLABLE LIBRARY USER’S GUIDE

In the program we first read the command line parameters amdieate a met-
ric object (see Section 3.7) that corresponds to the givennzand line para-
meter. Then we create a default parameter set (see Seciparl change the
GST_PARAM.GAP_TARGET parameter (see Appendix A). Finally, we compute
the SMTs using the high-level functiggst.smt() which takes the metric object
and parameter set as arguments. Only the SMT length is sgtdiromgst smt(),
and based on this the total length of all SMTs is computed &splayed.

Our third example, shown in Figure 4, is similar to the pregie@xample, but
instead of generating the terminal coordinates using aomntlimber generator,
we read the terminal coordinates from input. The input isiaesd to be in the
OR-library format. The program reads every instance in the file and computes
an SMT for each. The metric is given as the first command lirramater to

the program. Furthermore, the maximum FST size (numbenpofitals) can be
specified as the second command line parameter. By givinglisnound on the
FST size, the running time of FST generation may decreasdisantly — at the
cost of not necessarily returning the optimal solution.

2.2 Low-level interfaces

The low-level interfaces completely separate FST germraind FST concatena-
tion, the two components of the exact algorithm used by Gap&t Thus it is
possible to use alternative FST generation or concatenatgorithms — or to
store away generated FSTs and concatenate them at a lager tim

Another advantage of using the low-level interfaces is theatpr control they
provide over the solution process, in particular with resge solving the FST
concatenation problem. For most large instances the FSGatemation problem
— which is equivalent to solving a MSTHG problem — is by far thest time-

consuming part of the solution process.

As for the high-level interfaces, programs that use the llovel interfaces must
include the GeoSteiner header file and open the GeoSteimgoement. In the
example given in Figure 5 we construct a large random ternsieq generate
the rectilinear FSTs, and set up a solution state objecti®MSTHG problem
(see Section 3.11). One of the parameters passed to theoaddtdte object is

20R-library: http://www.ms.ic.ac.uk/info.html

2.2 Low-level interfaces 9

#i ncl ude <mat h. h>
#i nclude <stdlib. h>
#i ncl ude "geosteiner.h"

#define NUM_I NSTANCES 10

#defi ne NUM_TERVS 50
int main (int argc, char** argv)
{
int i, j, lanbda = 2;
doubl e terns[2*NUM TERMS], |ength, total |ength = 0.0, nmax_excess = 0.0;
gst_metric_ptr metric;
gst_param ptr parans;
/+ Read command |ine paraneters (metric and max. excess in percent) x/
if (argc >= 2) |anbda = atoi (argv[1]);
if (argc >= 3) max_excess = atof (argv[2]);
/+* Open GeoSteiner environment =/
if (gst_open_geosteiner () !'=0) {
printf ("Could not open GeoSteiner.\n");
exit (1);
}
/+* Set up netric =/
switch (lanbda) {
case 0: /* Euclidean netric =/
metric = gst_create_netric (GST_METRIC L, 2, NULL); break;
case 2: /* Rectilinear netric */
metric = gst_create_netric (GST_METRIC L, 1, NULL); break;
default:/* General uniformnetric =/
metric = gst_create_netric (GST_METRI C_UNI FORM | anbda, NULL);
}
/* Set up paraneter set x/
parans = gst_create_param (NULL);
gst _set _dbl _param (paranms, GST_PARAM GAP_TARCET, 1.0 + (nmax_excess/100.0));
|+ Generate NUM_ I NSTANCES random i nstances with NUM TERMS term nals x/
srand48 (1);
for (i = 1; i <= NUM.INSTANCES; i++) {
/+* Generate randompoints with coordinates in range 0..9999 */
for (j =0; j < 2«NUM_TERMS; j ++)
terns[j] = floor (drand48() * 10000.0);
/+ Conmpute Steiner tree and print length =/
gst_snt (NUM_TERMS, terns, & ength, NULL, NULL, NULL, NULL, NULL,
metric, parans);
printf ("lInstance %2d has length %\n", i, length);
total _l ength += | ength;
printf ("\nTotal length of all instances is %\n", total _|ength);
[+ Clean up */
gst_free_netric (netric);
gst _free_param (parans);
gst _cl ose_geosteiner ();
exit (0);
}

Figure 3: Demo program that computes SMTSs for a series oforahdgenerated
problem instances (demoZ2.c).

10

2 CALLABLE LIBRARY USER’S GUIDE

#i ncl ude <stdlib. h>
#i ncl ude "geostei ner. h"

int min (int argc, char** argv)

{

int i, lanrbda = 2, num. nstances, numternms;

double » terns, length, total _length = 0.0, max_fst_size = 0;
gst_metric_ptr metric;

gst _param ptr parans;

/+* Read conmand |ine paraneters (metric and max. FST size) */
if (argc >= 2) |anbda = atoi (argv [1]);
if (argc >= 3) max_fst_size = atof (argv [2]);

|+ Open CeoSteiner environment =/

if (gst_open_geosteiner () !'=0) {
printf ("Could not open GeoSteiner.\n");
exit (1);

}

[+ Set up netric =/
switch (lanbda) {
case 0: /* Euclidean netric =/

metric = gst_create_metric (GST_METRIC_L, 2, NULL); break;
case 2: /* Rectilinear netric */

metric = gst_create_metric (GST_METRIC_L, 1, NULL); break;
defaul t:/* General uniformnetric */

metric = gst_create_metric (GST_METRI C_UNI FORM | anbda, NULL);
}

/+* Set up paraneter set x/
parans = gst_create_param (NULL);
if (max_fst_size >= 2)
gst _set_int_param (parans, GST_PARAM MAX FST_SI ZE, max_fst_size);

/+ Read the nunber of instances and then the instances thenselves */
scanf ("%l", &num.instances);
for (i = 1; i <= num.instances; i++) {

/+* Read instance fromstdin */

scanf ("%", &umterns);

terms = (double *) malloc (2*xnum terns*sizeof (double));
gst _get_points (stdin, numterns, &erms, NULL);

/+* Conmpute Steiner tree */
gst_snmt (numterns, terms, & ength, NULL, NULL, NULL, NULL, NULL,
metric, parans);

printf ("Instance %d has %d terminals and | ength %\n",
i, numterms, |length);

total _l ength += I ength;

free (terns);

printf ("\nTotal length of all instances is %\n", total _|ength);
[+ Clean up */

gst_free_netric (metric);

gst _free_param (parans);

gst _cl ose_geosteiner ();

exit (0);

Figure 4. Demo program that computes SMTs for a series ddmests read from
an OR-library file (demo3.c).

2.3 Algorithmic callback functions 11

GST_PARAM CPU_TI ME_LI M T, which limits the amount of time spent in the
solver before returning to the application program.

In the main loop of the program we run the MSTHG solver by ngltjst_ hg_solve()
passing the solution state object as an argument. Whenuthisién returns, we
guery the solution state object for the current solutiotustahis is done by calling
gst get solver status()which returns a code that represents the four possibilities
(optimal solution, feasible solution, infeasible problaro feasible solution yet).

If a feasible solution has been found, the current upper awer bound is ob-
tained by querying the solution state property list. In axaraple we repeat the
main loop until we have found a feasible solution that is witthe maximum

specified excess from optimum.

2.3 Algorithmic callback functions

Although the implementation of the callback interface thea incomplete at this
time, callback functions provide the lowest-level — andyagas most powerful —
of all the interfaces in the GeoSteiner callable librarylli@zks are user-written
functions. Such functions become callbacks by passing #uelress to suitable
GeoSteiner routines. Once a function is established adlzacklin this manner,

GeoSteiner automatically invokes the function at the apoading critical points
in the branch-and-cut algorithm. For example, the user cavige callback rou-

tines that are invoked every time

e an LP is solved during the optimize / separate loop,

processing of a branch-and-bound node completes,

a new lower bound is obtained,

a new upper bound is obtained,

a branch variable is selected.

Callback functions permit the user to extend the GeoStep&mization algo-
rithms by incorporating application specific knowledg®isbme of GeoSteiner’s
most critical decisions. As an example, thb program (see Section 4) uses

12 2 CALLABLE LIBRARY USER’S GUIDE

#i ncl ude <mat h. h>
#include <stdlib. h>
#i ncl ude "geosteiner.h"

#defi ne NUM_TERVS 1000
#defi ne TI ME_I NTERVAL 2
#defi ne MAX_EXCESS 0.1

int min (int argc, char** argv)

{
int j, status, soln_status;
doubl e terns[2*NUM TERMS], | b, ub, cpu;
gst _hg_ptr hg; gst_solver_ptr solver; gst_paramptr parans;
|+ Open CeoSteiner environnment =/
if (gst_open_geosteiner () !=10) {
printf ("Could not open GeoSteiner.\n");
exit (1);
}
/+* Generate randomterminals with coordinates in range 0..9999 «/
srand48 (1);
for (j =0; j < 2*NUM_TERVS; | ++)
terms[j] = floor (drand48 () * 10000.0);
/+* Generate full Steiner trees (default parameters) =*/
hg = gst_generate_rfsts (NUM TERMS, terns, NULL, &status);
/+ Set up solver and its paraneters */
parans = gst_create_param (&status);
gst _set _dbl _param (paranms, GST_PARAM CPU TIME_LIM T, TIME_I NTERVAL);
sol ver = gst_create_sol ver (hg, paranms, &status);
for (;;) {
gst _hg_sol ve (solver, NULL);
gst _get _sol ver_status (solver, &soln_status);
switch (soln_status) {
case GST_STATUS_OPTI MAL:
case GST_STATUS_FEASI BLE:
gst _get _dbl _property (gst_get_sol ver_properties (solver),
GST_PROP_SOLVER _LOWER BOUND, &l b);
gst _get _dbl _property (gst_get_sol ver_properties (sol ver),
GST_PROP_SOLVER _CPU_TI ME, &cpu);
gst _hg_solution (solver, NULL, NULL, &ub, 0);
printf ("Tinme: %2f. LB =%, UB =%, ratio = %\n",
cpu, Ib, ub, ub/lb); break;
case GST_STATUS_| NFEASI BLE:
printf ("Problemis infeasiblel\n"); break;
case GST_STATUS_NO FEASI BLE:
gst _get _dbl _property (gst_get_sol ver_properties (solver),
GST_PROP_SOLVER _CPU_TI ME, &cpu);
printf ("Tinme: %2f. No feasible solution found yet.\n", cpu);
}
if (soln_status == GST_STATUS_OPTI MAL) br eak;
if ((soln_status == GST_STATUS_FEASI BLE) &&
(ub/1b < 1.0 + (MAX_EXCESS / 100.0))) break;
}
[+ Clean up */
gst_free_solver (solver); gst_free_hg (hg);
gst _free_param (parans); gst _cl ose_geosteiner ();
exit (0);
}

Figure 5: Demo program that computes a rectilinear Steneer(not necessarily
minimal) for a large random terminal set. The upper bounedlobound gap is
displayed at fixed running time intervals (demo4.c).

2.3 Algorithmic callback functions 13

callbacks to implement thieb - r switch: a callback function is defined that is
invoked upon completion of every node. When invoked for th@ node, the LP
solution is fractional, and ther switch was specified, this callback generates a
postscript plot of the node’s LP relaxation.

14 3 CALLABLE LIBRARY FUNCTIONS

3 Callable Library Functions

3.1 Application programming interface

All declarations needed to use the GeoSteiner library inpgieation are defined
in a single include file calledeost ei ner . h. All identifiers#def i ne’d in the
header file begin with the prefibxGST_". All structure or union tags and typedefs
begin with the prefix §st _". All functions provided by the library begin with the
prefix “gst _".

All GeoSteiner library functions reside in a single libra®n most systems the
name will bel i bgeost ei ner. a and linking is done with | geost ei ner.
A shared library is also possible on some systems. If Gen&téias been config-
ured to use CPLEX as its LP-solver, then the CPLEX callatieaty must also
be linked with the application program.

3.2 Design of library

The GeoSteiner library is designed to be completely reaattso that multiple
problems can be solved serially or in a round-robin fashibime current imple-
mentation might not yet completely satisfy this goal — escconcerning the
various LP-solver interfaces and the way GeoSteiner iotemith them. We hope
to eventually make the library fully thread-safe so thattipléd problems can be
solved in parallel within a single process address spacenoult&processor sys-
tem. However, this ideal is not yet supported in the currension.

All output generated by the library (i.e., text that was terit to stdout or stderr
by previous versions of GeoSteiner) is now user-contridlavarious types of
output have parameters that enable/disable their geoerathis is achieved using
so-called “channels” described in Section 3.13. By defdildtary routines are
completely “quiet”.

The library does not use any signals nor does it establishsggmal handlers.
These would be potential points of contention with appiawad that use the li-
brary. Instead, all asynchronous requests to alter or aG#oSteiner compu-
tation (e.g., to abort the solution process, force brarglmnlieu of constraint
generation, etc.) are delivered by a single routine thatesighed to be safe

3.3 Library objects 15

when called from a user-defined signal handler (see theigé@sarof the function
gst_deliver_signals()on page 156 for more information).

3.3 Library objects
3.3.1 GeoSteiner environment

The GeoSteiner environment encapsulates licensing irgtom and platform-
specific data. If CPLEX is used as LP solver, the CPLEX envirent is stored
here.

The environment is a singlglobal variable. No explicit user references to the
environment are possible, but the environmenst be initialized by calling the
gst.open_geosteiner()function (see Section 3.4).

3.3.2 Parameter set

A parameter set holds values for all parameters used bylraryi In order to
change one or more parameters, the user creates a new paraetetind modifies
the parameter(s) in this set. A pointer to the parametetygs st paramptr)

is then passed to all functions for which these parameténgstshould have ef-
fect. Whenever a GeoSteiner function accepts an argumé&pegst _paramptr,
the user may pass a NULL pointer in which case the GeoStebrary assumes
default settings for all parameter values.

Parameter setting and querying functions are describeédtid® 3.6, while the
individual parameters are described in Appendix A.

3.3.3 Problem instance

The problem instance object ishgpergraph that can be decorated with a vari-
ety of additional (and optional) data (see Section 3.9). Byching information
globally to the hypergraph, and to its vertices and edgesptbblem to be solved
becomes well-defined. In general we would like to construceain the hyper-
graph. Problem instance objects have tgsé hg ptr.

16 3 CALLABLE LIBRARY FUNCTIONS

Problem Solution State
gst _sol ver _ptr

Problem Instance Parameter Set
gst _hg_ptr gst _paramptr

Figure 6: Problem solution state references a problemriostand a parameter
set.

3.3.4 Problem solution state

The problem solution state object represents the “stateSoofie solution pro-
cess for a given problem instance (see Section 3.11). Thectban contain
zero or more feasible (though not necessarily optimal)tswis to the problem.
For a given problem instance, several problem solutior sthfects may be cre-
ated. A problem solution state object refers to both a probiestance being
solved and a parameter object (from which all necessarynpetea values are
obtained), as illustrated in Figure 6. The problem solustate object has type
gst sol ver ptr.

3.3.5 Auxiliary objects

In addition to the four object classes described above, @&ws$ uses objects
for handling metrics, property lists, messages, and sgafiformation. A short
introduction to these auxiliary objects is given in thistgat

Metric A metric object identifies the method for computing distanbetween
pairs of points. A metric objecthastygset nmetri c_ptr,andcanbe passed as

3.3 Library objects 17

an argument to some of the functions in the callable libraoy.more information,
see the examples given in Section 2.2, and the descriptfdhs metric functions
in Section 3.7.

Property List A property list contains auxiliary information about prebi in-
stances and solution state objects, e.g. the CPU time foigeg&ration (problem
instance property) and the current lower bound in the MSTldI8es (solution
state property). Property lists have tygpet _pr opl i st _pt r, and a property is
known by its property identification number (see Sectior).3.8

Channel All output messages from GeoSteiner are passed througitas#ollable
channels. A given channel may write its output to more thanartput (screen/files).
Channels have typgst _channel _pt r and are described in Section 3.13.

Scaling Information A set of points may have associated scaling information,
that is, information about how the internal representaawuble floating point
values) should be scaled back to the original point cootdsar his is done in or-
der to improve the numerical precision of GeoSteiner. 8gahformation objects
have typegst _scal e_i nf o_pt r and are described in Section 3.14.

18 3 CALLABLE LIBRARY FUNCTIONS

3.4 Opening and closing GeoSteiner environment

The GeoSteiner environment encapsulates licensing irgtom and platform-
specific data. If CPLEX is used as LP solver, the CPLEX envirent is stored
in the GeoSteiner environment.

The environment is a singlglobal variable. No explicit user references to the
environment are possible, but the environmenst be initialized by calling the
gst.open_geosteiner()function before any other library functions can be invoked.

In the reminder of this section, we present each of the fanstin the library
related to the GeoSteiner environment.

3.4 Opening and closing GeoSteiner environment 19

gst open_geosteiner

GeoSteiner can be in two major statgen or closed. The initial state is always
closed. This routine transitions GeoSteiner from ttlesed state to theopen state
by initializing the GeoSteiner environment. No other Gew&r library function
may be called when GeoSteinerdesed. In a multi-threaded environment, it is
the application’s responsibility to ensure that no callsttier GeoSteiner library
functions are either pending or initiated until GeoSteiisen the open state —
which begins as soon as this routine returns with a status abzero.

Note that the function doe®t open the LP solver (e.g., CPLEX). This is done
automatically the first time the LP solver environment isessed; however, it
can also be done explicitly using tigst open Ipsolver() function. An existing
CPLEX environment can also be attached to the GeoSteinémanvent. See
gst attach_cplex(); this is only relevant for CPLEX versions of the library.

I nt gst_open_geostei ner (void);

Returns status code (which is zero if GeoSteiner was suttigsspened).

Example:

i f (gst_open_geosteiner()) {
printf("GeoStei ner was not opened successfully.\n");
exit(1);

}

20 3 CALLABLE LIBRARY FUNCTIONS

gst close geosteiner

Transition GeoSteiner from thapen to theclosed state. Conceptually, GeoSteiner
enters theclosed state the very instant this routine is called. In a multetded
environment, it is the application’s responsibility to eresthat no calls to other
GeoSteiner library functions are pending at the time thigine is invoked.

I nt gst_cl ose_geosteiner (void);

Returns error code (which is zero if GeoSteiner was suagkgsfosed).
Example:

if (gst_close_geosteiner()) {
printf("GeoStei ner was not closed successfully.\n");
exit(1);

3.4 Opening and closing GeoSteiner environment 21

gst version_string

Return GeoSteiner version number as a character string.

const char * gst_version_string (void);

Returns null-terminated string giving the GeoSteiner isgeraumber.
Example:

printf ("This is GeoSteiner version %\n", gst_version_string());

22 3 CALLABLE LIBRARY FUNCTIONS

gst version

Return GeoSteiner version number as an integer with thewallg decimal in-
terpretation: XXXYYYZZZ, where XXX is the major version, Y¥is the minor
version and ZZZ is the patch-level.

int gst_version (void);

Returns integer representing the version number.

Example:

int version = gst_version();

printf ("This is GeoStei ner version %l. %. %\ n",
(version / 1000000),
(version / 1000) % 1000,
(version % 1000));

3.4 Opening and closing GeoSteiner environment 23

gst open_lpsolver

Initialize LP solver (e.g., CPLEX) environment. It is notaessary to open the
LP solver explicitly, since this is done automatically thstftime the LP solver is
needed. However, it might be advantageous to ensure thaPtlselver has been
successfully opened and is available for use before stgationg run.

i nt gst_open_| psolver (void);

Returns value zero if the LP solver was opened successfulliready was open.

Example:

i f (gst_open_geosteiner()) {
printf("GeoStei ner was not opened successfully.\n");
exit(1);
}
if (gst_open_Ilpsolver()) {
printf("LP solver was not initialized successfully.\n");
exit(1);
}
I+ At this point both CGeoSteiner and the LP solver are opened... =/

24 3 CALLABLE LIBRARY FUNCTIONS

gst close lpsolver

Close LP solver environment. In the case where the LP solasattached, e.g.,
using gst attach_cplex(), then this routine detaches but daes close the LP
solver.

int gst_close_|lpsolver (void);

Returns value zero if the solver was closed successfullyready was closed.

Example:

if (gst_close_geosteiner()) {
printf("LP solver could not be closed successfully.\n");
exit(1);

}

3.4 Opening and closing GeoSteiner environment 25

gst Ipsolver_version_string

Return the name of the configured LP solver and its versionbeurmas a string.

const char* gst_| psol ver_version_string (void);

Returns zero-terminated string giving the LP solver nantevansion.
Example:

printf ("CGeoSteiner used LP solver %\n",
gst _| psol ver_version_string());

26 3 CALLABLE LIBRARY FUNCTIONS

gst attach_cplex

Provided only for CPLEX versions of the library. Attach anstig CPLEX
environment to GeoSteiner. Certain applications may waskse CPLEX before,
during and/or after they use GeoSteiner. This function ftsreuch applications
to use an existing CPLEX environment rather than letting &eimer attempt to
open CPLEX itself (which would fail if CPLEX were already ope A non-
NULL CPLEX environment that was attached usggj attach_cplex() will not
be closed whegst_close geosteiner()is called.

voi d gst_attach_cplex (struct cpxenv* envp);

envp CPLEX environment to be attached.

No return value.

Example:

[+ Assume that envp is an existing CPLEX environnent...x/

[+ Open CeoSteiner */

if (gst_open_geosteiner()) {
printf("GeoStei ner was not opened successfully.\n");
exit(1l);

}

[+ Attach existing CPLEX environnment =/
gst _attach_cpl ex(envp);

/+* Now envp is the CPLEX environment used by GeoSteiner... =/
|+ Detach CPLEX environnent and cl ose GeoSteiner */

gst _detach_cpl ex();
gst_cl ose_geostei ner();

3.4 Opening and closing GeoSteiner environment 27

gst detach cplex

Provided only for CPLEX versions of the library. Detach aatlirn a previously
attached CPLEX environment. Does not close the CPLEX engient.

struct cpxenv* gst_detach_cplex ();

Return value iNULL if no CPLEX environment is currently attached.

An example is given with the documentationgdt attach_cplex() on page 26.

28 3 CALLABLE LIBRARY FUNCTIONS

3.5 High-level optimization functions

The high-level functions give the user easy access to thie blgrithms in the
library. There are two types of functions: Firstly, there &unctions that solve
Steiner tree problems in the plane by passing a set of poartiotates; secondly,
the MSTHG problem can be solved by giving a description of liipergraph
instance.

All functions have a parameter set as argument. This pagrset can be cre-
ated and modified using the functions described in Secti®nkowever, default
parameters are used for all parametersM#LL pointer is passed as parameter
set.

3.5 High-level optimization functions 29

gst smt

Given a set of points (or terminals) in the plane, constracBMT for the points.
The metric used for the SMT construction must be specifieced{€ted func-
tions for specific metrics are given on the following pageshe length of the
constructed SMT, the Steiner points and the list of line sagsiin the SMT are
returned.

Any of the output parameters may be sef\tdLL if the corresponding output is
not needed. It is the responsibility of the user to allocatficGent memory for
the output arrays.

int gst_snt (int nt er ns,
doubl ex termns,
doubl ex | engt h,
i nt* nsps,
doubl ex* sps,
i nt* nedges,
i nt* edges,
i nt* st at us,

gst_nmetric_ptr netric,
gst _param ptr par am ;

nt er ns Number of points (or terminals).

terns Input point coordinatese(, v, z2, ya, . . .).

| engt h Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

edges Edges of.SMT (t.erminals have index Ortber ns-1
while Steiner points have index er ns and up).

st at us Solution status code (see page 114).

nmetric Metric object (see Section 3.7).

par am Parameter selNUL L=default parameters).

Returns value zero if an SMT was computed and non-zero otber8ee Figure 3
on page 9 or the example fitkenp2. ¢ for an example of how to usgst smt().

30 3 CALLABLE LIBRARY FUNCTIONS

gst esmt

Given a set of points (or terminals) in the plane, constradaclidean SMT for
the points. The length of the constructed SMT, the Steinertp@nd the list of
line segments in the SMT are returned.

Any of the output parameters may be seiMd_L if the corresponding output is
not needed. It is the responsibility of the user to allocatficGent memory for
the output arrays.

int gst_esnt (int nt erns,
doubl ex termns,
doubl ex* | engt h,
i nt* nsps,
doubl ex* sps,
i nt* nedges,
i nt = edges,
i nt* st at us,

gst _param ptr param;

nt er s Number of points (or terminals).

terms Input point coordinatesiq, y1, x2, ya, . . .).

| engt h Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

edges Edges of_SMT (t_erminals _have index Ontber ns-1
while Steiner points have index er ns and up).

st at us Solution status code (see page 114).

par am Parameter selNUL L=default parameters).

Returns value zero if an SMT was computed and non-zero otberw

An example is given in Section 2.1.

3.5 High-level optimization functions 31

gst rsmt

Given a set of points (or terminals) in the plane, construectlinear SMT for
the points. The length of the constructed SMT, the Steinertp@nd the list of
line segments in the SMT are returned.

Any of the output parameters may be sefdLL if the corresponding output is
not needed. It is the responsibility of the user to allocatficGent memory for
the output arrays.

int gst_rsmt (int nt er ns,
doubl ex termns,
doubl ex* | engt h,
i nt* nsps,
doubl ex* sps,
i nt* nedges,
I Nt edges,
i nt* st at us,

gst _param ptr param;

nt er ns Number of points (or terminals).

terms Input point coordinatesiq, y1, x2, ya, . . .).

| engt h Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

edges Edges of_SMT (t_erminals have index Ortber ns-1
while Steiner points have index er ns and up).

st at us Solution status code (see page 114).

par am Parameter selNUL L=default parameters).

Returns value zero if an SMT was computed and non-zero otberw

An example is given in Section 2.1.

32 3 CALLABLE LIBRARY FUNCTIONS

gst osmt

Given a set of points (or terminals) in the plane, constraaicilinear SMT for
the points. The length of the constructed SMT, the Steinertp@nd the list of
line segments in the SMT are returned.

Any of the output parameters may be seiMd_L if the corresponding output is
not needed. It is the responsibility of the user to allocatficGent memory for
the output arrays.

int gst_osnt (int nt erns,
doubl ex termns,
doubl ex* | engt h,
i nt* nsps,
doubl ex* sps,
i nt* nedges,
i nt = edges,
i nt* st at us,

gst _param ptr param;

nt er s Number of points (or terminals).
terms Input point coordinatesiq, y1, x2, ya, . . .).
| engt h Length of computed SMT.

nsps Number of Steiner points.

sps Steiner point coordinates.

Edges of SMT (terminals have indices Orntber ns-
edges 1 while Steiner points have indices$ er ns and up).
stat us Solution status code (see page 114).
par am Parameter seNULL=default parameters).

Returns value zero if an SMT was computed and non-zero otberw

An example is given in Section 2.1.

3.5 High-level optimization functions 33

gst_ hgmst

Given an edge-weighted hypergraph, construct a minimumrspg tree (MST)
in this hypergraph.

Any of the output parameters may be sef\tdLL if the corresponding output is
not needed. It is the responsibility of the user to allocatficGent memory for
the output arrays.

int gst_hgnst (int nverts,
i nt nedges,
I nt* edge_si zes,
I Nt * edges,
doubl ex wei ght s,
doubl ex* | engt h,
i nt* nmst edges,
I nt* nst edges,
i nt* st at us,

gst _param ptr par an') ;

nverts Number of vertices in the hypergraph.

nedges Number of edges in the hypergraph.

edge_si zes Array giving number of vertices in each edge

edges Array of vertices contained in each edge.

wei ght s Array of edge weights.

nnet edges Number of edges in the minimum spanning tree.

st edges ,tﬁr\;rjy of edges contained in the minimum spanning
st at us Solution status code (see page 114).

par am Parameter selNUL L=default parameters).

Returns value zero if an MST was computed and non-zero otberw

34 3 CALLABLE LIBRARY FUNCTIONS

Example:

static int edge_sizes [] = {2, 2, 2, 3};

static int edges [] = {0, 1, /* edge 0 =*/
0, 2, /* edge 1 =*/
1, 2, /* edge 2 =*/
o0, 1, 2}; /* edge 3 =*/

static double weights [] = {3.0, 2.0, 1.0, 4.0};

doubl e | engt h;

int code, i, nnstedges, nstedges [2];
code = gst_hgmst (3, /* nverts =/
4, /* nedges =/
edge_si zes,
edges,
wei ght s,
&l engt h,
&nnst edges,
nst edges,
NULL, /* ignore status x/
NULL) ; /* use default paraneters =/

if (code '=0) {
fprintf (stderr, "Return code = %\ n", code);

exit (1);
}
printf ("Optinmal solution = %: ", length);
for (i = 0; i < nnstedges; i++) {
printf (" %", nstedges [i]);
}

printf ("\n");

3.6 Parameter setting and querying functions 35

3.6 Parameter setting and querying functions

A parameter set is an object that holds values for all pararsét the library. The
library provides the following operations on parametesset

e create a parameter set having “default” values,

change parameter settings in a parameter set,

query the current, default, minimum and maximum values gfErameter,

guery the type of a parameter,

copy an existing parameter set,

free a parameter set.

Parameter sets have tygst par ampt r. Various library functions require a
parameter set to be provided as an argument. In all such taseslid for the
caller to pass &ULL pointer, in which case default settings will be used for all
parameters.

Each supported parameter has a specific type. When quehenype of a pa-

rameter, the library responds with an integer value thabtéesthe corresponding
parameter type. The parameter types supported, togethethei integer values
that denote them are as follows:

Type Macro Name Value
i nt GST_PARAMTYPE | NTEGER 1
doubl e GST_PARAMIYPE_DOUBLE 2
char = GST_PARAMTIYPE_STRI NG 3
gst _channel _ptr GST_PARAMI'YPE_CHANNEL 4

Externally each parameter has a unique number defined33f aPARAMmacro
(see Appendix A). This macro is used as an argument to themnedea get/set
functions. Note that there are distinct parameter getisettions for each param-
eter type.

36 3 CALLABLE LIBRARY FUNCTIONS

gst create param

Create a new parameter set with default parameters.

gst _param ptr gst_create_param (int* status);

Status code (zero if operation was successful and non-

t at .
status zero otherwise).

Returns new parameter set with default parameters.

Example:

i nt status;

[+ Create a default paraneter set =/
gst _param ptr myparam = gst_creat e_paranm&st at us) ;

[+ Change one paranmeter to a non-default val ue */
gst_set _int_paranm(nyparam GST_MAX FST_SI ZE, 4);

/+* Use the new paraneter set...x/

3.6 Parameter setting and querying functions

gst copy param

37

Copy all parameter values from one parameter set into anothe

I nt gst_copy_param (gst_param ptr dst,
gst _paramptr src);

Parameter set that should be overwritten.NULL,

dst this routine does nothing.

Parameter set that should be copiedNWLL pointer

sre is handled as the default set of parameters.

Returns zero if the parameter set was copied successfully.

Example:

[+ Assune that paraml is an existing paraneter set =/

gst_param ptr paran? = gst_create_param NULL);

i f (gst_copy_param (paran®, paranl)) {
printf("Could not copy paraneter set.\n");
exit(1);

}

[+ At this point paran?2 is a copy of paraml =*/

38 3 CALLABLE LIBRARY FUNCTIONS

gst free_param

Free parameter set. Freeing a parameter set that is stiterefed by any other
GeoSteiner object (e.g., by a problem solution state opproduces undefined
behavior.

int gst _free_param (gst_param ptr param;

Parameter set that should be freedNULL, this rou-

param tine does nothing.

Returns zero if the parameter set was freed successfully.

Example:

[+ Free existing paraneter set nyparam */
gst _free_paran(nyparan;

3.6 Parameter setting and querying functions 39

gst set dbl_param

Change value of a specified double parameter in a given pseased.

i nt gst_set_dbl _param (gst_paramptr param

i nt whi chpar am
doubl e newal ue) ;
par am Parameter set.
whi chpar am Parameter ID of double parameter to modify
(GST_PARAMmMmacro).
newal ue New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

[+ Set a CPUtime lint of 0.5 seconds for paraneter set myparam =/
gst _set _dbl _paranm(nmyparam GST_PARAM CPU LIM T, 0.5);

40 3 CALLABLE LIBRARY FUNCTIONS

gst get dbl_param

Get current value of a specified double parameter from a giaeameter set.

I nt gst_get_dbl _param (gst_paramptr param

i nt whi chpar am
doubl ex* val ue) ;
par am Parameter set.
whi chpar am Parameter ID of double parameter to access
(GST_PARAMmacro).
val ue Current value of parameter (pointer to double vari-

able).

Returns zero if the parameter was accessed successfully.

Example:

doubl e cpulimt;
gst _get dbl _param(nmyparam GST_PARAM CPU LIM T, &cpulimt);
printf ("The current CPUtine limt is %2f.\n", cpulimt);

3.6 Parameter setting and querying functions 41

gst_query_dbl_param

Query properties of a specified double parameter in a giveanpeter set.

i nt gst_query_dbl _param (gst_paramptr param

i nt whi chpar am

doubl ex* current _val ue,

doubl ex* defaul t _val ue,

doubl ex m n_val ue,

doubl ex* max_val ue);
par am Parameter set.

Parameter ID of double parameter to query
(GST_PARAMmMacro).

Current value of parameter (pointer to double vari-
able).

Default value of parameter (pointer to double vari-

able).
Minimum value of parameter (pointer to double vari-
able).
Maximum value of parameter (pointer to double vari-
able).

Each of the last four arguments may KELL if the corresponding value is not
needed.

whi chparam

current _val ue

def aul t _val ue

m n_val ue

max_val ue

Returns zero if the parameter was queried successfully.

42 3 CALLABLE LIBRARY FUNCTIONS

Example:

[+ nyparamis an existing paranmeter set =/
doubl e curval, defval, minval, maxval;
if (gst_query_dbl _param (nyparam
GST_PARAM _GAP_TARCET,
&curval ,
&def val ,
& nval ,
&maxval) = 0) {
fprintf (stderr, "Paraneter query failed.\n");
exit (1);
}
printf ("Gap target: current=%, default=%, mn=%g, max=%g.\n",
curval, defval, mnval, maxval);

3.6 Parameter setting and querying functions 43

gst setint_param

Change value of a specified integer parameter in a given deauset.

i nt gst_set_int_param (gst_paramptr param

i nt whi chpar am
i nt newal ue) ;
par am Parameter set.
. Parameter ID of integer parameter to modify
whichparam o paARAMmacro).
newal ue New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

/+ Collect the 10 best solutions. =*/
gst_set _int_param (nmyparam GST_PARAM NUM FEASI BLE SOLUTI ONS, 10);

44 3 CALLABLE LIBRARY FUNCTIONS

gst get.int_param

Get current value of a specified integer parameter from angragameter set.

I nt gst_get_int_param (gst_paramptr param

i nt whi chpar am
i ntx val ue);
par am Parameter set.
whi chpar am Parameter ID of integer parameter to access
(GST_PARAMmacro).
val ue Current value of parameter (pointer to integer vari-

able).

Returns zero if the parameter was accessed successfully.

Example:

int viimt;
gst_get _int_paranm(nyparam GST_PARAM BACKTRACK MAX VERTS, &vlimt);
printf ("The current backtrack search vertex limt is %d.\n", vlimt);

3.6 Parameter setting and querying functions 45

gst query_int_param

Query properties of a specified integer parameter in a giaearpeter set.

i nt gst_query_int_param (gst_paramptr param

i nt whi chpar am

i nt* current _val ue,
I nt* defaul t _val ue,
i nt* m n_val ue,

i nt* max_val ue);

par am Parameter set.
Parameter ID of integer parameter to query

whi chparam ot pARAMmacro).
Current value of parameter (pointer to integer vari-
current _val ue
able).
def aul t val ue Default value of parameter (pointer to integer vari-
able).
: Minimum value of parameter (pointer to integer vari-
m n_val ue
able).
Maximum value of parameter (pointer to integer vari-
max _val ue able)

Each of the last four arguments may KELL if the corresponding value is not
needed.

Returns zero if the parameter was queried successfully.

46 3 CALLABLE LIBRARY FUNCTIONS

Example:

[+ paramis an existing paraneter set =/
int curval, defval, minval, maxval;
if (gst_query_ int_param (param
GST_PARAM BRANCH VAR PQOLI CY,
&curval ,
&defval ,
&mi nval ,
&maxval) = 0) {
fprintf (stderr, "Paraneter query failed.\n");
exit (1);
}
printf ("Branch variable policy:
"current =%, defaul t=%g, m n=%, nmax=%g.\n",
curval, defval, mnval, maxval);

3.6 Parameter setting and querying functions 47

gst set str_param

Change value of a specified string parameter in a given paearset.

I nt gst_set_str_param (gst_paramptr param

i nt whi chpar am
const char* str);
par am Parameter set.
whi chpar am Parameter ID of string parameter to access
(GST_PARAMmMmacro).
chan New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

[+ Establish a nane for ny probleminstance. */
#def i ne MY_I NSTANCE_NAME_PARAM - 123
i nt code;
code = gst_set_str_param (nyparam
MY_I NSTANCE_NAME_PARAM
"Bowser");
if (code '=0) {
fprintf (stderr, "gst_set str_paramfailed.\n");
exit (1);

48

3 CALLABLE LIBRARY FUNCTIONS

gst get str_param

Get current value of a specified string parameter in a givearpeater set.

I nt gst_get_str_param (gst_paramptr param

i nt whi chpar am
i nt* | engt h,
char * str);

par am Parameter set.

whi chpar am Parameter ID of string parameter to access
(GST_PARAMmMacro).
The length of the string is written to this integer (un-

| engt h less it is aNULL pointer). A length of- 1 indicates
that the parameter has the vaNeLL, which is dis-
tinct from a string of length zero.

str The current value for this parameter is copied to the

string provided here (unless it iSNULL pointer).

Returns zero if the parameter was accessed successfully.

3.6 Parameter setting and querying functions

Example:

#def i ne MY_I NSTANCE_NAME_PARAM -123
i nt code, |ength;
char+ val ue;

/= First, get length of the string. =*/
gst _set _str_param (nypar am
MY_I NSTANCE_NANME_PARAM
&l engt h,
NULL) ;
val ue = NULL;
if (length >= 0) {
/+* Allocate buffer to receive string value. =*/
value = (char *) nmalloc (length + 1);
code = gst_set _str_param (nmyparam
MY_I NSTANCE_NAME_PARAM

NULL,
val ue) ;
}
printf ("My probleminstance name = %\n",
(value == NULL) ? "<null>" : value);

if (value !'= NULL) {
free (val ue);

}

50 3 CALLABLE LIBRARY FUNCTIONS

gst set chn_param

Change value of a specified channel parameter in a given péeaset.

I nt gst_set_chn_param (gst_param ptr par am
i nt whi chpar am
gst _channel ptr chan);

par am Parameter set.

whi chpar am Parameter ID of a channel parameter to modify
(GST_PARAMmMacro).

chan New value for this parameter.

Returns zero if the parameter was set successfully.

Example:

i nt code;
gst _channel _ptr chan;

[+ Create a channel directed to stdout. =*/
chan = gst _create_channel (NULL, NULL);
gst _channel _add file (chan, stdout, NULL);

/= Direct solver trace info to stdout. =*/
code = gst_set _chn_param (nyparam GST_PARAM PRI NT_SOLVE_TRACE, chan);
if (code !'=0) {
fprintf (stderr, "gst_set _chn_paramfailed.\n");
exit (1);

3.6 Parameter setting and querying functions 51

gst get chn_param

Get current value of a specified channel parameter from angigeameter set.

I nt gst_get_chn_param (gst_param ptr par am
i nt whi chpar am
gst _channel ptr* chan);

par am Parameter set.

Parameter ID of channel parameter to access
(GST_PARAMmMacro).

Current value for this parameter (pointer to channel
variable).

whi chpar am

chan

Returns zero if the parameter was accessed successfully.

Example:

i nt code;
gst_channel _ptr chan

[+ Get current solver trace channel. x/
code = gst_get_chn_param (nyparam
GST_PARAM PRI NT_SCOLVE_TRACE
&chan) ;
if (code '=0) {
fprintf (stderr, "gst_get _chn_paramfailed.\n");
exit (1);
}
if (chan !'= NULL) {
[+ Turn off the trace and destroy the channel. =*/

gst _set _chn_param (mypar am
GST_PARAM PRI NT_SOLVE_TRACE

NULL) ;
gst _free_channel (chan);

52 3 CALLABLE LIBRARY FUNCTIONS

gst get param_id

Translate a parameter name into the corresponding paraitete

int gst_get_param.id (const charx par am nane,
i nt* param.i d) ;

The name of a parameter (e.g., "mést_size”, or

"GST_PARAM_MAX _FST_SIZE").

Address of an integer to store the parameter ID corre-

sponding to the given parameter name. This will be

parami d -1 for unknown or unrecognizable parameter names.
Thepar am.i d argument can bBIULL, if the actual
parameter ID value is not required.

par amnaine

Returns zero if th@ar am.namnme was recognized and the parameter ID was suc-
cessfully found.

Example:
int parmd;
if (gst_get _param.id ("save_ format", &parmd) != 0) {
fprintf (stderr, "gst_get _param.id failed.\n");
exit (1);
}

printf ("Paraneter 1D %l\n", parmd);

3.6 Parameter setting and querying functions 53

gst get param_type

Get the type of a specified parameter id.

i nt gst_get_paramtype (int whi chpar am
intx type);

whi chpar am Parameter ID to queryGST_PARAMmMacro).
This integer is set to the type of the parameter. The
type parameter types and their encodings as integer values
are given in the table on page 35.

Returns zero if the type was found successfully.

Example:

charx str;

i nt parntype;

if (gst_get_paramtype (GST_PARAM SAVE FORMAT, &parntype) !'= 0) {
fprintf (stderr, "gst_get_paramtype failed.\n");
exit (1);

}

switch (parntype) {

case GST_PARAMIYPE | NTEGER: str = "int"; br eak;
case GST_PARAMIYPE DOUBLE: str = "doubl e"; break;
case GST_PARAMIYPE STRI NG str = "string"; break;
case GST_PARAMIYPE CHANNEL: str = "channel"; break;

defaul t: str "unknown"; break;

}

printf ("Paraneter is of type %.\n", str);

54 3 CALLABLE LIBRARY FUNCTIONS

gst set param

Set the value of a named parameter from the given string. fbhisne permits
the value of any integer, double or string parameter to beogée value given in
text string form. This is a convenient way to set parametensfcommand line
arguments.

int gst_set param (gst_paramptr param

const char = nane,

const char* val ue) ;
par am Parameter set.
namne Name of parameter to set (see Appendix A).
val ue Text string containing data value to set.

Example:

int min (int argc, char **argv)
{ .

i nt i, i

char = ap;

gst_channel _ptr myparm

gst _open_geost ei ner (NULL);
myparam = gst_create_param (NULL);

[+ Parse arguments such as: -ZBRANCH VAR POLICY 3 */

for (i =1; i <arge; i++) {
ap = argv [i];
if ((ap[O] t="-") || (ap[1] !'="2")) usage ();
j = gst_set_param (nyparam &ap[2], argv [i+1]);
if (j '=0) usage ();
+4+i ;

}

[+ Paranmeters are now set... =/

3.7 Metric setting and querying functions 55

3.7 Metric setting and querying functions

The support of different metrics in the GeoSteiner librarpiimarily handled by
metric objects. Some functions in the library use theseimetyjects automat-
ically, e.g.,gst. esmt(), while others require one to specify a metric object, e.g.,
gst smt(). The metric objects provide a simple way to make generalicgpmns
support several different metrics. An example of this caridoed in the demo
programdenn2. ¢ which is the code for a small program supporting all metrics
supported by GeoSteiner.

Two L,-metrics, L, (rectilinear) andL, (Euclidean), are supported. Also, all
uniform metrics — so-called-metrics — are supported. The latter are metrics
where only a limited numbet > 2 of equally-spaced orientations are allowed for
the edges in a solution. Far= 2 this is identical to the rectilinear metrig, .

When a metric object has been created, the distance betweepaints in the
metric can be obtained by callirggt distance() This is especially useful for the
A-metrics for which efficient calculation is non-trivial.

The following macros are used for identifying the supportestrics:

Metric Type Macro Name Value
None GST_METRI C_NONE 0
L GST_METRI C L 1

P

Uniform GST_METRI C_UNI FORM 2

56 3 CALLABLE LIBRARY FUNCTIONS

gst create_metric

A metric is defined by a type and a parameter. Forlthenetric this parameter
must be either 1 or 2, and for themetric we must have > 2.

Note that even though the,-metric and the\-metric with parameter 2 are the
same (rectilinear metric), you cannot expect them to giaety the same results
when used to solve Steiner problems. The first one will rasuthe use of a
dedicated FST generator for the rectilinear problem anthtker will result in the
use of a general FST generator fametrics. If you are aiming for speed then use
the L,-metric.

gst_nmetric_ptr gst_create_netric (int type,
i nt par anet er,
intx status);

type Metric type (see macro values in the table on

page 55).
par anet er Metric parameter.
st at us Status code (zero if operation was successful and non-

zero otherwise).

Returns new metric object.

Example:

/+* Creating a Euclidean nmetric object =/
gst_netric_ptr netric;
metric = gst_create_nmetric (GST_METRIC L, 2, NULL);

[+ And use it as a paraneter to gst_smnt =/
gst_smt (nterms, terns, & ength, NULL, NULL, NULL, NULL, NULL,
metric, NULL);

3.7 Metric setting and querying functions 57

gst free_metric

Free an existing metric object. Freeing a metric object ihatill referenced
by any other GeoSteiner object (e.g., a hypergraph objeotjyces undefined
behavior.

int gst free netric (gst_metric_ptr netric);

nmetric Metric object. Does nothing iNULL.

Returns zero if operation was successful.

Example:

[+ Free paranmeter object mynmetric */
gst_free_ netric (nmymetric);

58 3 CALLABLE LIBRARY FUNCTIONS

gst_copy_metric

Copy attributes from one metric object to another.

int gst_copy_netric (gst_netric_ptr dst,
gst_nmetric_ptr src);

dst Metric object that should be overwritten.
Metric that should be copied. AULL pointer is
src considered as a "None” metric type (see table on
page 55).

Returns zero if metric object was copied.

Example:

gst_netric_ptr newnetric;
newretric = gst_create_metric (GST_METRI C_NONE, 0);
gst_copy_netric (newnetric, oldnetric);

/* newretric is now the same netric as oldnmetric. x/

3.7 Metric setting and querying functions 59

gst distance

Compute the distance between two points under a given metric

doubl e gst _distance (gst_netric_ptr netric,

doubl e x1,
doubl e yl,
doubl e X2,
doubl e y2);

metric Metric object.

x1 X-coordinate for first point.

yl Y-coordinate for first point.

X2 X-coordinate for second point.

y2 Y-coordinate for second point.

Returns the distance. Returned value is always zero if ook is "None”.

Example:

[+ Assume that nynetric is a netric object. =*/

/= Conpute distance between points (0,0) and (1,1). =*/
doubl e d;

d = gst_distance (nynetric, 0.0, 0.0, 1.0, 1.0);

60 3 CALLABLE LIBRARY FUNCTIONS

gst get metric_info

Get the information about a metric object.

int gst_get_netric_info (gst_metric_ptr netric,

I nt type,
i nt* par anmet er) ;
metric Metric object.
type A pointer to an intgger in Wh.iCh to place the metric
type. See the possible types in the table on page 55.
An optional pointer to an integer in which to place the
par anet er metric parameter. See the possible parameters in the

description ofgst create metric().

Returns zero if operation was successful. Either of theilestarguments may be
NULL if the corresponding value is not needed.

Example:

[+ Let mynetric be a nmetric object =*/
int type, paraneter;
gst_get _netric_info (nynetric, & ype, ¶neter);
switch (type) {
case GST_METRI C_NONE:
printf ("Metric is None.\n");
br eak;
case GST_METRI C _L:
printf ("Metric is L%l.\n", paraneter);
br eak;
case GST_METRI C_UNI FORM
printf ("Metric is Uniform%d.\n", paraneter);
br eak;
def aul t:
printf ("Metric is unknown!\n");

3.8 Property list setting and querying functions 61

3.8 Property list setting and querying functions

Property lists can be used to hold values which are rarelatggod(the data struc-
ture holding the informatiorannot be queried/updated in constant time). The
following basic operations are provided by the library:

e create an empty property list,

set/create a value in a property list,

delete a value from a property list,

get a value in a property list,

guery the type of a property,

copy a property list,

¢ free a property list (including its content).

A property list has typgst _propl i st _ptr and a property is known by its
property ID (a macro name which expands to a signed integer).

The main purpose of property lists is to make extra infororaéibout the solution
process available to the user through a simple interface. phoperty ID with a
value larger than or equal to zero is reserved by the libfdegative values can be
freely used by the user. The property ID values (and theircmaames) currently
in use can be found in Appendices B and C.

Note that there are distinct property get/set functionglftferent property types.

The type of a given property — which is an integer — can be gaeriThe sup-

ported property types, together with the integer values dieaote them are as
follows:

Type Macro Name Value
i nt GST_PROPTYPE_I NTEGER 1
doubl e GST_PROPTYPE_DOUBLE 2

char* GST_PROPTYPE_STRI NG 3

62 3 CALLABLE LIBRARY FUNCTIONS

gst create proplist

Create a new empty property list.

gst_proplist_ptr
gst _create proplist (intx status);

Status code (zero if operation was successful and non-
stat us zero otherwise). May bRULL if value is not needed.

Returns new property list.

Example:

gst_proplist_ptr plist;

i nt status;

plist = gst_create_proplist (&status);

if (status !'= 0) {
fprintf (stderr, "Unable to create property list.\n");
exit (1);

}

gst _set _int_property (plist, GST_PROP_SOLVER_ROOT_OPTI MAL, 1);

3.8 Property list setting and querying functions 63

gst free_proplist

Free an existing property list. Freeing a property list tisadtill referenced by
existing GeoSteiner objects (e.g., hypergraphs and sjlvesults in undefined
behavior. In most cases it is an error to free a propertyhist vas not obtained
via a call togst create proplist() .

int gst_free_proplist (gst_proplist_ptr plist);

A property list to free. IfNULL, this routine does

pli st nothing.

Returns a status code (zero if operation was successful@ndearo otherwise).

Example:

gst_proplist _ptr plist;
plist = gst_create_proplist (NULL);

[+ Various operations on plist... */

gst_free_proplist (plist);

64 3 CALLABLE LIBRARY FUNCTIONS

gst_copy_proplist

Empty the destination property list and copy all properimns it from the source
property list.

int gst_copy_proplist (gst_proplist_ptr dst,
gst _proplist_ptr src);

dst Property list that should be overwritten.
Property list that should be copied. MULL pointer
is handled as an empty property list.

Src

Returns zero if the property list was copied successfully.

Example:

[+ W assune that His a hypergraph... =*/
gst_proplist_ptr copy;

copy = gst_create_proplist (NULL);

if (gst_copy_proplist (copy, gst_get _hg properties(H)) == 0) {
/+* W& have now created a copy of the property list for H */

}
el se {
/* Sonet hi ng went wong */
}
[+ Use new copy of property list... */

/= Free copy =*/
gst _free_proplist (copy);

3.8 Property list setting and querying functions 65

gst get property type

Query the type of a given property.

I nt gst_get_property_type (gst_proplist_ptr plist,

i nt propi d,
i nt* type);
pli st An existing property list.
propi d A property ID value.

Pointer to an integer which will be overwritten with

type the type of the property.

Return a status code (zero if operation was successful anderm otherwise).

Example:

/+ W assune that His a hypergraph... =*/
int type;

if (gst_get _property_type (gst_get_hg properties(H),
GST_PROP_HG_GENERATI ON_TI ME,
&ype) 1= 0) {
[+ Somet hing went wrong =*/
}
el se {
switch (type) {
case GST_PROPTYPE_INTEGER /* Property is an integer value x/

br eak;

case GST_PROPTYPE DOUBLE: [/=* Property is a floating point value */
br eak;

case GST_PROPTYPE_STRING /=* Property is a string value */
br eak;

default: /* Sonething went wong =*/

}

66 3 CALLABLE LIBRARY FUNCTIONS

gst delete property

Remove any value that might be defined for the given prop&tydgardless of
type.

int gst_delete property (gst_proplist_ptr plist,
i nt propid);

pli st Property list.
propi d ID of property to delete.

Returns zero if the property was successfully deleted fimarptoperty list.
ReturnsGST_ERR_I NVALI D_PROPERTY_LI ST if the property list itself is in-
valid.

ReturnsGST_ERR_PROPERTY_NOT_FOUND if no property having the given ID
exists.

Example:

/= \W& are given a property list plist =*/
#defi ne MY_PROPERTY_ID -1000

gst _del ete_property (plist, MY_PROPERTY_ID);

[+ plist no | onger has any val ue defined */
[+ for property ID -1000. =/

3.8 Property list setting and querying functions 67

gst get dbl_property

Get the value of a specified double property from a given ptgpist. The spec-
ified property must be of type double or an error is returnda vdlues greater
than or equal to zero are reserved for GeoSteiner’s use.tMedla values can be
freely used by user applications.

i nt gst_get_dbl _property (gst_proplist_ptr plist,

i nt propi d,
doubl ex* val ue) ;
pli st Property list.
propid ID of double property to retrieve.

Current value of property (pointer to double variable).

val ue May beNULL if value is not needed.

Returns zero if the property was accessed successfully.

ReturnsGST_ERR PROPERTY _NOT_FOUND if no property having the given ID
exists.

ReturnsGST_ERR_PROPERTY_TYPE_M SMATCHif the property exists but does
not have type double.

Example:

/= W& are given a property list plist and a doubl e val ue has
been set for the ID val ue GST_PROP_USER MYVALUE =/
#def i ne GST_PROP_USER MY_DBL_VALUE -1000

doubl e val ue;
gst _get _dbl _property (plist,
GST_PROP_USER My_DBL_VALUE,
&val ue);
printf ("My_dbl _value is currently set at % 2f.\n", val ue);

68 3 CALLABLE LIBRARY FUNCTIONS

gst get int_property

Get the value of a specified property from the given propesty The specified
property must be of type integer or an error is returned. IDesgreater than or
equal to zero are reserved for GeoSteiner’s use. Negativalizs can be freely
used by user applications.

int gst_get_int_property (gst_proplist_ptr plist,

i nt propi d,
i nt* val ue) ;
pli st Property list.
propid ID of integer property to retrieve.

Current value of property (pointer to integer variable).

val ue May beNULL if value is not needed.

Returns zero if the property was accessed successfully.

ReturnsGST_ERR PROPERTY _NOT_FOUND if no property having the given ID
exists.

ReturnsGST_ERR_PROPERTY_TYPE_M SMATCHif the property exists but does
not have type integer.

Example:

/= \W& are given a property list plist and an integer val ue has
been set for the ID value GST_PROP_USER MY I NT_VALUE =/
#def i ne GST_PROP_USER_MY_I NT_VALUE -1001

i nt val ue;
gst_get _int_property (plist,
GST_PROP_USER My _| NT_VALUE,
&val ue);
printf ("My_int _value is currently set at %l.\n", val ue);

3.8 Property list setting and querying functions 69

gst get str_property

Get the value of a specified property from the given propesty The specified
property must be of type string or an error is returned. IDugalgreater than or
equal to zero are reserved for GeoSteiner’s use. Negativaliizs can be freely
used by user applications.

I nt gst_get_str_property (gst_proplist_ptr plist,

i nt propi d,
I nt * | engt h,
char * str);
pli st Property list.
propi d ID of string property to retrieve.

The length of the string is written to this integer (un-

less it is aNULL pointer). The returned length does
| engt h not include the terminating null character. The re-
turned length is -1 if the property value isNULL
pointer (which is distinct from a zero length string).
The current value for this parameter is copied into the
buffer provided here (unless it iSNULL pointer).

Sstr

Returns zero if the property was accessed successfully.

ReturnsGST_ERR PROPERTY _NOT_FOUND if no property having the given ID
exists.

ReturnsGST_ERR_PROPERTY_TYPE_M SMATCHif the property exists but does
not have type string.

70 3 CALLABLE LIBRARY FUNCTIONS

Example:

i nt code, |ength;
char* buf;
buf = NULL;
code = gst_get _str_property (plist, GST_PROP_HG NAME
&l ength, NULL);
if ((code == 0) && (length >= 0)) {
buf = (char *) malloc (length + 1);
gst_get str_property (plist,
GST_PROP_HG_NAME
NULL,
buf);
}
printf ("Hypergraph name is %\n",
(buf == NULL) ? "<NULL>" : buf);
if (buf !'= NULL) free (buf);

3.8 Property list setting and querying functions 71

gst get properties

Retrieve all property IDs and their types from the given @ryplist.

int gst_get _properties (gst_proplist_ptr plist,

i nt* count,
i nt* propi ds,
i nt* types);

pli st Property list.
count Number of properties in the givgn i st (unlessitis
aNULL pointer).
, Buffer to receive the property IDs of each property in
propi ds pli st (unlessitis &ULL pointer).
types Buffer tq r_eceive the types of each propertyini st
(unless it is aNULL pointer).

Returns zero if the properties were successfully retrieved

Example:

int count;
i nt* propids;
i nt* types;
code = gst_get_properties (plist, &ount, NULL, NULL);
if (code '=0) {
/* Somet hi ng went wong. */

exit (1);
}
propids = (int *) malloc (count * sizeof (int));
types = (int *) malloc (count * sizeof (int));
gst_get _properties (plist, NULL, propids, types);
for (i =0; i < count; i++) {
printf ("Propid = %, type = %.\n",
propids [i], types [i]);
}

free (types);
free (propids);

72 3 CALLABLE LIBRARY FUNCTIONS

gst set dbl_property

Change or create a specified property in the given propesty Tihe property is
added to the list if not already present. If the propertyadseexists, its type is
forced to be double. It ikgal to do this with any property list.

int gst_set _dbl _property (gst_proplist_ptr plist,

i nt propi d,
doubl e val ue) ;
pli st Property list.
propid ID of double property to create or modify.
newal ue New value for this property.

Returns zero if the property was set successfully.

Example:

[+ Assume we are given a property list plist =/
#def i ne GST_PROP_USER My_DBL_VALUE -1000

gst _set _dbl _property (plist, GST_PROP_USER My _DBL_VALUE, 2.71828);

3.8 Property list setting and querying functions 73

gst set.int_property

Change or create a a specified property in the given propsttylhe property is
added to the list if not already present. If the propertyadseexists, its type is
forced to be integer. It ikegal to do this with any property list.

int gst_set_int_property (gst_proplist_ptr plist,

i nt propi d,
i nt val ue) ;
pli st Property list.
propid ID of integer property to create or modify.
newal ue New value for this property.

Returns zero if the property was set successfully.

Example:

[+ Assume we are given a property list plist =/
#def i ne GST_PROP_USER MY_| NT_VALUE -1001

gst_set _int_property (plist, GST_PROP_USER My_| NT_VALUE, 42);

74 3 CALLABLE LIBRARY FUNCTIONS

gst set str_property

Change or create a specified property in the given propesty Tihe property is
added to the list if not already present. If the propertyadseexists, its type is
forced to be string. It isegal to do this with any property list.

int gst_set _str_property (gst_proplist_ptr plist,

i nt propi d,
const charx* val ue);
pli st Property list.
propid ID of string property to create or modify.
newal ue New value for this property.

Returns zero if the property was set successfully.

Example:

[+ Assume we are given a property list plist =/
gst_set _str_property (plist, GST_PROP_HG NAME, "Qobl eck");

3.9 Hypergraph functions 75

3.9 Hypergraph functions

The hypergraph object represents an arbitrary hypergfagthcan be decorated
with a variety of additional (and optional) data. For exaepghe edges can be
given weights. In general, the goal of GeoSteiner is to finghaneing tree of
minimum total weight using the edges of the hypergraph.

In this section we document all of the operations provideafeating, destroying
and manipulating hypergraph objects.

Hypergraphs can be embedded in the plane: Vertices can ba goordinates
and hyperedges can be associated with trees in the plane.eMsry hypergraph
has an associated metric object (Section 3.7), a scaliregb{$ection 3.14) and
a property list (Section 3.8).

The library interfaces have been designed to permit maxirtexibility in using
the various operations provided. For example, it is interttiat the user be able
to define a hypergraph, solve it, modify some attributes efttppergraph (e.g.,
change some of the edge costs), and re-solve the modifieteprod he library
should be smart enough to know when the problem can be redstarting from
the most recent solution state — and when it is necessarnstadi the previous
solution state and re-solve the current problem from skrratc

76 3 CALLABLE LIBRARY FUNCTIONS

gst create hg

Create an instance of an empty hypergraph. The hypergr#ilynhas no ver-
tices and no edges. After creating an empty hypergraph,dkiestep is normally
to give it the desired number of vertices usggl_set hg_number_of_vertices(),
and then add the edges usigst set hg_edges() Doing the steps in this order
avoids the failure that would result from attempting to adides that refer to
non-existent vertices.

gst_hg _ptr gst_create_hg (int* status);

Status code (zero if the operation was successful and
stat us non-zero otherwise). May BeULL if the value is not
needed.

Returns new hypergraph object.

Example:

gst_hg_ptr h;
i nt status;
h = gst_create_hg (&status);
if (status !'=0) {
/= Somet hi ng went wong */
}

/= Make it be a conplete hypergraph on 3 vertices */
status = gst_set _hg nunber_of vertices (h, 3);
if (status !'=0) {
I+ Error */
}

el se {
static int edge_sizes [] = {2, 2, 2, 3};
static int edges [] = {0, 1, 0, 2, 1, 2, 0, 1, 2};
status = gst_set _hg edges (h, 4, edge_sizes, edges, NULL);

3.9 Hypergraph functions 77

gst copy_hg

Make a copy of a given hypergraph. Any data associated wihd#stination
hypergraph is discarded, and the following attributes apged from the source
hypergraph (if present): vertices, edges, edge weightsjerabject info, scale
object info, property list, vertex embedding, and edge aidirey.

int gst_copy_hg (gst_hg ptr dst,
gst_hg _ptr src);

Destination hypergraph object. All existing data in

the destination is discarded.
src Source hypergraph object to copy.

dst

Returns zero if the hypergraph was copied successfully.

Example:

[+ Assune that h is an existing hypergraph =/
gst _hg_ptr newhg;
newhg = gst_create_hg (NULL);
status = gst_copy_hg (newhg, h);
if (status !'= 0) {
fprintf (stderr, "Error copying hypergraph\n");
exit (1);
}
gst _set _hg_edge_wei ghts (newhg, NULL);
/+* newhg is now a copy of h, but with all edge weights = 1. =/

78 3 CALLABLE LIBRARY FUNCTIONS

gst_copy_hg_edges

Make a copy of a given hypergraph with a subset of the origitgles. Any
data associated with the destination hypergraph is diedarahd the following
attributes are copied from the source hypergraph (if ptgseartices, (subset of)
edges, (subset of) edge weights, metric object info, sdgexbinfo, property list,
vertex embedding, and edge embedding.

I nt gst_copy_hg_edges (gst_hg ptr dst,
gst_hg_ptr src,
i nt nedges,
i nt* edges) ;

Destination hypergraph object. All existing data in

dst the destination is discarded.

src Source hypergraph object to copy.

nedges Number of edges to copy from source hypergraph.

edges Index values of edges to copy from source hyper-
graph.

Returns zero if (a subset of) the hypergraph was copied ssfudby.

Example:

/+* Assunme that h is an existing hypergraph with 10 edges =*/
static int edges [] = {2, 4, 6, 8};
gst _hg_ptr newhg;
newhg = gst_create_hg (NULL);
status = gst_copy_hg_edges (newhg, h, 4, edges);
if (status !'=0) {
fprintf (stderr, "Error copying hypergraph\n");
exit (1);
}
/+* newhg is now a copy of h but having only 4 of the edges of h */

3.9 Hypergraph functions 79

gst free_hg

Remove a hypergraph and free all associated memory, imgudisociated prop-
erties.

int gst free_hg (gst_hg ptr H);

Hypergraph to free. INULL, this function does noth-
ing.
Returns zero if the hypergraph was freed successfully.

H

Example:

[+ Assune that h is an existing hypergraph =/

i nt status;

status = gst_free_hg (h);

if (status !'= 0) {
fprintf (stderr, "Error freeing hypergraph\n");
exit (1);

80 3 CALLABLE LIBRARY FUNCTIONS

gst set hg_number_of_vertices

Define the number of vertices of a hypergraph.

i nt gst_set_hg _nunmber _of _vertices (gst_hg ptr H,

i nt nverts);
H Hypergraph.
Number of vertice$i should have (non-negative num-
nverts ber)

Returns zero if the number of vertices was set successfully.

Example:

[+ Construct a hypergraph with 20 vertices (no error checking) =/
gst _hg_ptr hg;

hg = gst_create_hg (NULL);
gst _set _hg nunber _of vertices (hg, 20);

3.9 Hypergraph functions 81

gst set hg_edges

Define the set of edges of a hypergraph (default associdteuiiation).

I nt gst_set _hg edges (gst_hg ptr H,

i nt nedges,
i nt* edge_si zes,
I nt* edges,
doubl ex wei ght s) ;
H Hypergraph.
nedges Number of edgesi should have.
edge si zes Number of vertices for each edge.
edges Vertex indices of each edge.
wei ght s Edge weights (iNULL then all edge weights are 1).

Returns zero if the edges were defined successfully.

Example:

[+ Construct a conplete hypergraph on 3 vertices
with edge weights 1 (no error checking) =/

gst_hg_ptr h;
static int edge_sizes [] = {2, 2, 2, 3};
static int edges [] = {0, 1, 0, 2, 1, 2, 0, 1, 2};

h = gst_create_hg (NULL);
gst _set _hg nunber _of vertices (h, 3);
gst _set _hg _edges (h, 4, edge_sizes, edges, NULL);

82 3 CALLABLE LIBRARY FUNCTIONS

gst set hg_edge weights

Set all edge weights of a hypergraph.

I nt gst_set_hg edge_weights (gst_hg ptr H,

doubl ex* wei ght s) ;
H Hypergraph.
Array of edge weights of length equal to the number
wei ght s of edges inH (if NULL then all edge weights are set
to 1).

Returns zero if the edges weights were set successfully.

Example:

[+ Assunme that h is a hypergraph with 4 edges =/

static double weights [] = {1.0, 2.0, 3.0, 4.0};
i nt status;

status = gst_set _hg edge weights (h, weights);

if (status !'=0) {
fprintf (stderr, "Error setting edge wei ghts\n");
exit (1);

}

[+ The edges of h now have weights 1, 2, 3 and 4 =/

3.9 Hypergraph functions 83

gst set hg_vertex_embedding

Embed the vertices in a hypergraph in sokr@imensional space. (In the current
version only the-dimensional space, the plane, is supported.)

nt gst_set _hg_vertex_enbeddi ng (gst_hg_ptr H,

i nt di m
doubl ex* coords);
H Hypergraph whose vertices should be embedded.
dim Dimension of space (currently only dimension 2 is
supported).
Vertex coordinatesa(, y1, x2,y2,...). Length must
coords be the dimension times the number of vertices in the
hypergraph.

Returns zero if the vertices were embedded successfully.

Example:

[+ Assume that h is an existing hypergraph with four vertices x/
static double coords [] = {0, O, 1, O, 1, 1, O, 1};
int status;
status = gst_set _hg vertex_enbedding (h, 2, coords);
if (status !'= 0) {
fprintf (stderr, "Error enbedding vertices\n");
exit (1);
}
I+ The four vertices of h are now enbedded as
(0,0), (0,1), (1,1) and (0,1). =/

84 3 CALLABLE LIBRARY FUNCTIONS

gst set hg_metric

Set the metric object associated with a hypergraph.

int gst_set_hg netric (gst_hg_ptr H,
gst_nmetric_ptr nmetric);

H Hypergraph.

Metric object that should be associated wiih(see
Section 3.7 for information on metric objects). If
NULL, then the hypergraph metric will be set to
"None”.

metric

Returns zero if metric was set successfully.

Example:

[+ Assume that h is an existing hypergraph =/

[+ Create a Euclidean nmetric object =*/
gst_netric_ptr netric;
metric = gst_create_nmetric (GST_METRIC L, 2, NULL);

I+ Associate it with h =/
gst_set_hg netric (h, nmetric);

3.9 Hypergraph functions 85

gst set hg_scaleinfo

Set the scaling information associated with a hypergraph.

int gst_set_hg scale_info (gst_hg ptr H,
gst _scale_info_ptr scinfo);

H Hypergraph.
Scaling information that should be associated with
scinfo this hypergraph (see Section 3.14)NLL, then no

scaling is used for this hypergraph.

Returns zero if the scaling information was set succegsfull

Example:

/+ Read a set points fromstdin, generate FST hypergraph
and set scaling information */

gst _hg_ptr hg;
gst_scale_info_ptr scinfo;
int n;

doubl ex terns;

n = gst_get_points (stdin, 0, &ernms, scinfo);
hg = gst_generate_efsts (n, terms, NULL, NULL);
gst_set _hg scale_info (hg, scinfo);

86 3 CALLABLE LIBRARY FUNCTIONS

gst get hg terminals

Get terminal vertices for a hypergraph. The terminal ingliage returned in the
t er s array.

int gst _get _hg termnals (gst_hg ptr H,
i nt* nt er ns,
i nt* terns);

3.9 Hypergraph functions

gst get hg number_of vertices

87

Get the number of vertices of a hypergraph.

i nt gst_get_hg nunber_of _vertices (gst_hg ptr

H) ;

H Hypergraph.

A return value of -1 implies that the hypergraph was invalid.

Example:

[+ Assume that hg is an existing hypergraph =/
int nverts;

nverts = gst_get hg nunber _of vertices (hg);

/+* nverts is now equal to the nunmber of vertices in hg */

88 3 CALLABLE LIBRARY FUNCTIONS

gst get hg_edges

Get the set of edges of a hypergraph. If any of the three figairaents iSNULL,
the corresponding information is not returned. The usertbaallocate space
for holding the returned data. Necessary sizes for arraydpeabtained by first
obtaining the number of edges, then the edge sizes and fthalisertices for each
edge (see example below).

i nt gst_get_hg _edges (gst_hg ptr H,

i Nt = nedges,
i nt* edge_si zes,
i nt* edges,
doubl ex* wei ght) ;

H Hypergraph.

nedges Number of edges in this hypergraph.

Number of vertices for each edge (pointer to an array

edge.si zes allocated by the user).

Vertex indices of each edges (pointer to an array allo-
edges

cated by the user).
wei ght s Edge weights (pointer to an array allocated by the

user).

Returns zero if the edges were queried successfully.

3.9 Hypergraph functions 89

Example:

[+ Assume that His some hypergraph */
int i, nedges, nedgeverts;

i nt* edge_si zes;

i nt* edges;

doubl ex wei ght ;

[+ First we query the nunmber of edges =*/
gst _get _hg edges (H, &nedges, NULL, NULL, NULL);

/+ Al'locate space for edge sizes and edge weights */
edge_si zes (int x) mal | oc (nedges * sizeof (int));
wei ght (double *) mall oc (nedges * sizeof (double));

[+ Query edge sizes and wei ghts =/
gst_get _hg edges (H, NULL, edge_ sizes, NULL, weight);

[+ Count the nunber of vertices in all edges */
nedgeverts = O;
for (i = 0; i < nedges; i++)
nedgeverts += edge_sizes[i];
edges = (int *) malloc (nedgeverts * sizeof (int));

/+= Finally query vertices of edges =*/
gst_get _hg edges (H, NULL, NULL, edges, NULL);

90 3 CALLABLE LIBRARY FUNCTIONS

gst get hg_one edge

Get information about one edge in the hypergraph. If any eftkinee last argu-
ments to the function iBIULL, the corresponding information is not returned.

int gst_get _hg one_edge (gst_hg ptr H

i nt edge_nunber,
doubl ex* wei ght ,
i nt=* nverts,
i nt* verts);
H Hypergraph.
edge_nunber Edge number to query (first edge is number 0).
wei ght Weight of edge (pointer to a double variable).
Number of vertices in this edge (pointer to an int vari-
nverts able)

Vertex indices of this edges (pointer to an array allo-

terms cated by user).

Returns zero if the edge was queried successfully.

Example:

[+ Assume that His sonme hypergraph with at |east 10 edges =/
int nverts;

intx verts;

doubl e wei ght;

[+ Query edge nunber 10 =*/
gst_get _hg one_edge (H, 10, &weight, &nverts, NULL);

[+ Al'locate space for vertex indices */
verts = (int *) malloc (nverts » sizeof (int));

[+ Query vertex indices */
gst _get _hg one_edge (H, 10, NULL, NULL, verts);

3.9 Hypergraph functions 91

gst get hg_vertex embedding

Get the embedding of the vertices in a hypergraph.

I nt gst_get_hg vertex_enbedding (gst_hg ptr H,

i nt* di m
doubl ex* coords);
H Hypergraph whose vertices are embedded.
. Dimension of the space (pointer to an integer vari-
dim
able).
Array in which to place the vertex coordinates of the
coor ds embedding 4, y1, r2, y2, . . .). This array must be al-

located by the user, and its length must be dimension
times the number of vertices in the hypergraph.

Returns zero if the embedding was returned successfully.

Example:

[+ Assume that h is an existing hypergraph with four vertices
enbedded in the plane */

doubl e coords] 8];

int status;

status = gst_get hg vertex_enbeddi ng(H, NULL, coords);

if (status !'= 0) {
fprintf (stderr, "Error querying vertex enbeddi ng\n");
exit (1);

}

/= coords now hol ds the coordi nates of the enbedded vertices */

92 3 CALLABLE LIBRARY FUNCTIONS

gst get hg_one vertex embedding

Return the embedding of a single vertex in a hypergraph.

I nt gst_get_hg _one_vertex_enbeddi ng
(gst_hg_ptr H,

i nt vertex_nunber,
doubl ex coords);
H Hypergraph whose vertices are embedded.

Vertex number whose embedding should be queried
(first vertex is number 0).

Coordinates of the vertex embedding (y;). This ar-
coords ray must be allocated by the user, and its length equal
to the dimension of the space of the embedding.

vert ex_nunber

Returns zero if the embedding was returned successfully.

Example:

[+ Assume that h is an existing hypergraph with four vertices
enbedded in the plane */

doubl e coords[2];

int status;

[+ Query enbeddi ng of vertex nunber 3 =/

status = gst_get _hg_one_vertex_enbeddi ng(H, 3, coords);

if (status !'= 0) {
fprintf (stderr, "Error querying vertex enbeddi ng\n");
exit (1);

}

[/ coords now holds the coordi nates of vertex nunber 3 */

3.9 Hypergraph functions 93

gst get hg_edge embedding

Return the embedding of a subset of edges in a hypergraphy fahe four last
arguments to the function NULL, the corresponding information is not returned.

int gst_get hg edge_enbeddi ng (gst_hg ptr H

i nt nhgedges,
i nt* hgedges,
i nt* nsps,
doubl ex sps,
i nt* nedges,
i nt* edges) ;
H Hypergraph
Number of hyperedges that should be queried for em-
nhgedges bedding information (when equal to O all edges are
returned).
List of indices of hyperedges that should be queried.
hgedges If this argument iSNULL then the firshhgedges are
returned.

Number of Steiner points in embedding of all queried

nsps hyperedges (pointer to int variable).

sps Coordinates of Steiner points in the embedded hyper-
edges (pointer to double array allocated by user).

nedges Number of edges in thembedding (pointer to int

variable).

Indices of the edge endpoints @mbedding (pointer
to int array allocated by user). Letbe the number
edges of vertices in hypergraphl. Then hypergraph vertex
endpoints have indicgsto n — 1 while Steiner end-
points have indices and up.

Returns zero if the embedding was queried successfully.

94 3 CALLABLE LIBRARY FUNCTIONS

Example:

[+ Assume that His an enbedded hypergraph with
5 vertices and 10 edges. The conpl et e enbeddi ng
has 15 Steiner points and 30 edges. W woul d |ike
to get the enbeddi ng of hyperedges with even indices. */

i nt nsps;

i nt nedges;
doubl e sps[30];
i nt edges[60];

static int hgedges [] = {0, 2, 4, 6, 8};

gst _get _hg edge_enbedding (H, 5, hgedges,
&nsps, sps, &nedges, edges);

/* Now sps contains the Steiner point coordinates,
whi | e edges contai n edge endpoi nts; hypergraph
vertices have endpoint indices 0..4 and Steiner
poi nts endpoint indices 5..19. =/

3.9 Hypergraph functions 95

gst get hg_one edge embedding

Return the embedding of a single edge in a hypergraph. Natehb indices of
vertices spanned by an edge can be obtained by gsinget_hg_one_edge()

int gst_get _hg one_edge_enbeddi ng
(gst_hg_ptr H

i nt edge_nunber,
i nt* nsps,

doubl ex coor ds,

i nt* nedges,

i nt* edges) ;

H Hypergraph.
Hyperedge number whose embedding should be

edge_nunber qgueried (first hyperedge has number 0).
nSDS Number of Steiner points in the embedding for the
P hyperedge (pointer to int variable).

Coordinates of Steiner points in embedded hyperedge
coords .

(pointer to double array allocated by user).

Number of edges in thembedding (pointer to int
nedges

variable).

Indices of edge endpoints in tleenbedding (pointer

to int array allocated by user). Létbe the number
edges of vertices in the hyperedge. Then hypergraph ver-
tex endpoints have indicésto £ — 1 while Steiner
endpoints have indicésand up.

Returns zero if embedding was queried successfully.

96 3 CALLABLE LIBRARY FUNCTIONS

Example:

[+ Assume that His an enbedded hypergraph with 10 edges.
W would Iike to get the enbeddi ng of hyperedge 7. =/

i nt nsps;

i nt nedges;
doubl ex sps;
i nt* edges;

gst _get _hg one_edge enbedding (H, 7, &nsps, NULL, &nedges, NULL);
[+ Al'l ocate space =/

sps = (double *) malloc (2+*nsps * sizeof (double));

edges = (int *) mal | oc (2*nedges * sizeof (int));

gst _get _hg one_edge enbedding (H, 7, NULL, sps, NULL, edges);

/* Now sps contains the Steiner point coordinates,
whi | e edges contain edge endpoints. */

3.9 Hypergraph functions 97

gst get hg_edge status

Return the pruning status of an edge. Wigst _pr une_edges runs, it may
determine that some edges are “required” (such edgesappear in any optimal
solution). It may also determine that certain other edgeswanneeded” (at least
one optimal solution exists that does not use any “unneedddé). By default,
edges are neither “unneeded” nor “required.” It is impdgsibr an edge to be
simultaneously “unneeded” and “required.”

i nt gst_get_hg edge_status (gst_hg ptr H

i nt edge_nunber,
i nt* unneeded,
i nt * required);
H Hypergraph.
edge_nunber Hyperedge whose pruning status should be queried.
Non-zero if edge is “unneeded” (pointer to an int vari-
unneeded able)
r equi red :k())lgzero if edge is “required” (pointer to an int vari-

Returns zero if pruning status was queried successfully.

98 3 CALLABLE LIBRARY FUNCTIONS

Example:

[+ Assume that His an enbedded hypergraph with N
edges that has been pruned. W would like to
get the pruning status of its edges. =*/

int i, unneeded, required,;
const char * s;

for (i =0; i <N i++) {
gst _get hg edge_status (H, i, &unneeded, &required);
if (required) {
s = "required";
} else if (unneeded) {
s = "unneeded";
} else {
s = "undeci ded";

}
printf (" Edge % is %\n", s);

3.9 Hypergraph functions 99

gst get hg metric

Get the metric object associated with a hypergraph.

int gst_get_hg netric (gst_hg_ptr H,
gst_metric_ptrx metric);

H Hypergraph.
Metric object associated with this hypergraph (see
Section 3.7 for information on metric objects).

metric

Returns zero if the metric was queried successfully.

Example:

[+ Assune that h is an existing hypergraph =/
gst_netric_ptr netric;

[+ Get metric associated with h =/
gst_get _hg netric (h, netric);

100 3 CALLABLE LIBRARY FUNCTIONS

gst get hg_scaleinfo

Get the scaling information associated with a hypergraph.

I nt gst_get_hg scale_info
(gst_hg_ptr H,
gst _scale_info_ptr+ scinfo);

H Hypergraph.
Scaling information associated with this hypergraph
(see Section 3.14).

scinfo

Returns zero if the scaling information was queried sudaégs

Example:

[+ Assume that h is an existing hypergraph =/
gst_scal e_info_ptr scinfo;

[+ Get scaling informati on associated with h =/
gst _get _hg scale_info (h, scinfo);

3.9 Hypergraph functions 101

gst get hg_properties

Return the list of properties associated with a hypergraph.

gst_proplist_ptr
gst _get _hg properties (gst_hg ptr H);

H Hypergraph

Returns the property list.

Example:

[+ Assume we are given a hypergraph H */
doubl e gtinme, ptine;
gst_proplist_ptr hgprop;

[+ Get timng information fromthe hypergraph, if avail able */
hgprop = gst_get _hg properties (H);

gtime = 0.0; ptime = 0.0;

gst _get _dbl _property (hgprop, GST_PROP_HG GENERATI ON TI ME, >i ne);
gst _get _dbl _property (hgprop, GST_PROP_HG PRUNI NG Tl ME, &ptine);

printf ("Generation time: % 2f\n", gtine);
printf ("Pruning tinme: %2f\n", ptine);
printf ("Total time: % 2f\n", ptinme + gtine);

[+ W can set our own property in the same list e.g. for later use */
#defi ne GST_PROP_USER_TOTAL_TI ME -1000
gst _set _dbl _property (hgprop, GST_PROP_USER TOTAL_TIME, gtine + ptine);

102 3 CALLABLE LIBRARY FUNCTIONS

gst hg_to_graph

Given a hypergraph having a geometric embedding for eacts afertices and
edges, construct an ordinary graph containing the indaliddges in the embed-
ding. For a rectilinear embedding the paramé&@8i PARAM GRI D OVERLAY
is used to specify that the edges of the reduced grid grapermr#tan individual
edges of the embedding should be returned.

The original vertices in the hypergraph are marketeasinalsin the new graph,
but the only way to get this information out of the new graph is to print it wgin
functiongst_save hg().

gst_hg _ptr gst_hg_to_graph (gst_hg_ptr H,
gst _param ptr param
i nt* stat us);
H Hypergraph
par am Parameter set.

Status code (zero if the operation was successful and

status .
non-zero otherwise).

Returns the new graph which represents the embedding.

Example:

/+* Assume we are given an enbedded hypergraph H =/
H2 = gst_hg_to_graph (H, NULL, NULL);

[+ Now H2 is a graph of the enbedding of H Print it. =/
gst_save_hg (stdout, H2, NULL);

3In a future release of the library, there will be other mediataining this information.

3.10 FST generation and pruning functions 103

3.10 FST generation and pruning functions

All algorithms for solving geometric Steiner tree problem$eoSteiner use the
two-phase approach that consists of full Steiner tree (Ff¢heration and con-
catenation.

FST generation is the process of generating a (hopefullylss® of FSTs that
is known to contain a Steiner minimum tree (SMT) as a subséte ifput to
an FST generation algorithm is the set of terminal pointsl e output is an
embedded hypergraph in which the vertices correspondnartafs and the edges
correspond to FSTs. The embedding of each hyperedge (ori& 81 geometric
tree structure of the FST.

In this section we describe the interface to all FST genemaigorithms. They
are all fairly similar. In addition, a FSpruning function is given. This function
reduces the set of FSTs — or removes edges from the hypergraplhch that
the resulting hypergraph still contains an SMT. This mayeshap the following
concatenation algorithm, in particular for very large genb instances.

104 3 CALLABLE LIBRARY FUNCTIONS

gst generate fsts

Given a point set (terminals) in the plane, generate a seSasKhyperedges)
known to contain an SMT for the point set. The metric that &thdoe used is
passed as a parameter (see section 3.7 for more on creating otgects). The
generated FSTs are returned as edges in an embedded hppergra

gst_hg ptr
gst _generate fsts (int nt er s,

doubl ex termns,
gst_metric_ptr netric,
gst _param ptr par am
i nt* status);

nt er ns Number of terminals.

terns Terminals in an array of doublesy(y1, z2, ys, - . .)

metric The metric for which FSTs are to be generated.

par am Parameter setNULL=default parameters).

stat us Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

i nt n;
doubl e * termns;
gst_hg_ptr hg;

gst_netric_ptr netric;

/+* Read points fromstdin =/
n = gst_get _points (stdin, 0, &erns, NULL);

/= Establish |anbda-6 netric */
metric = gst_create_netric (GST_METRIC UNI FORM 6, NULL);

[+ Generate | anbda-6 FSTs */
hg = gst_generate fsts (n, terns, nmetric, NULL, NULL);

3.10 FST generation and pruning functions 105

gst generate efsts

Given a point set (terminals) in the plane, generate a seSasKhyperedges)
known to contain aricuclidean SMT for the point set. The FSTs are returned as

edges in an embedded hypergraph.

gst_hg ptr
gst _generate_efsts (int nt er s,

doubl ex termns,
gst _param ptr param
i nt* status);

nt er ns Number of terminals.

terns Terminals in an array of doubles;(y1, 2, y2, . . .)

par am Parameter setNULL=default parameters).

st at us Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

i nt n;
doubl e = terns;
gst_hg_ptr hg;

/+* Read points fromstdin =/
n = gst_get_points (stdin, 0, &erms, NULL);

|+ Generate Euclidean FSTs */
hg = gst_generate efsts (n, ternms, NULL, NULL);

106 3 CALLABLE LIBRARY FUNCTIONS

gst generate rfsts

Given a point set (terminals) in the plane, generate a seSasKhyperedges)
known to contain aectilinear SMT for the point set. The FSTs are returned as

edges in an embedded hypergraph.

gst_hg ptr
gst _generate_rfsts (int nt er s,

doubl ex termns,
gst _param ptr param
i nt* status);

nt er s Number of terminals.

terns Terminals in an array of doubles;(y1, 2, ys, - . .)

par am Parameter setNULL=default parameters).

stat us Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

i nt n;
doubl e * terns;
gst_hg_ptr hg;

/+* Read points fromstdin =/
n = gst_get_points (stdin, 0, &ernms, NULL);

/+* CGenerate rectilinear FSTs =/
hg = gst_generate rfsts (n, terms, NULL, NULL);

3.10 FST generation and pruning functions 107

gst_generate ofsts

Given a point set (terminals) in the plane, generate a seSasKhyperedges)
known to contain aroctilinear SMT for the point set. The FSTs are returned as

edges in an embedded hypergraph.

gst_hg ptr
gst _generate_ofsts (int nt er s,

doubl ex termns,
gst _param ptr param
i nt* status);

nt er ns Number of terminals.

terns Terminals in an array of doubles;(y1, 2, y2, . . .)

par am Parameter setNULL=default parameters).

st at us Status code (zero if successful).

Returns the resulting FSTs in a hypergraph structure.

Example:

i nt n;
doubl e = terns;
gst_hg_ptr hg;

/+* Read points fromstdin =/
n = gst_get_points (stdin, 0, &erms, NULL);

[+ Generate octilinear FSTs */
hg = gst_generate ofsts (n, ternms, NULL, NULL);

108 3 CALLABLE LIBRARY FUNCTIONS

gst_ hg prune_edges

Given a hypergrapf#/, return a hypergrapli/’ that has the same vertices s
but a (possibly) reduced set of edges such that there g8lissan optimal solution
to H in H'. The pruning algorithms are metric dependent and requiemangtric
embedding of the hypergraph vertices and edges.

gst _hg ptr gst_hg_prune_edges (gst_hg ptr H,
gst _param ptr param
i nt* status);
H Hypergraph.
par am Parameter selNUL L=default parameters).
st at us Status code (zero if successful).

Returns new pruned hypergraph.

Example:

/+* Assume that hg is an FST hypergraph */

gst_hg_ptr hgl;

[+ Prune the set of FSTs in hg */

hgl = gst_hg_prune_edges (hg, NULL, NULL);

/= Hypergraph hgl now has the same set of vertices as hg,

but (in nost cases) a significantly smaller set of edges that
still contains an SMI as a subset =*/

3.11 Hypergraph optimization functions 109

3.11 Hypergraph optimization functions

The optimization problem associated with hypergraphsasriimi mum spanning
tree (MST) in hypergraph problem. Solving this problem solves the FST concate-
nation problem — which is the second of the two phases forisglgeometric
Steiner tree problems.

The library contains a powerful solver for the general MSThypergraph prob-
lem. This solver uses linear programming and branch-amn{scbacktrack search
for very small problem instances). A large number of paransetan be set to con-
trol the solver; consult Appendix A.3, A.4 and A.5 for a coeitpl list of all solver
parameters.

A solution state object has tygest _sol ver _pt r. It has an associated hyper-
graph for which an MST should be found. The solver can be €idppd restarted,
e.g., depending on either the quality of (approximate)tsmhg that are found in
the solution process, or on the amount of running time uskd.sblution state ob-
ject can contain zero or more feasible (though not necdgsariimal) solutions
to the problem. A solution state object refers to both an hyagh object and
a parameter object (from which all necessary parameteesate obtained), as
illustrated in Figure 6 on page 16. A demonstration progragiven in Figure 5
on page 12.

110 3 CALLABLE LIBRARY FUNCTIONS

gst create solver

Create a solution state object for a given hypergraph. Theiso process is
started by calling the functiogst_hg_solve() and passing the created object as
parameter.

gst _sol ver_ptr

gst _create_sol ver (gst_hg ptr H,
gst _param ptr param
i nt* status);
H Hypergraph.
par am Parameter seNULL=default parameters).
stat us Status code (zero if successful).

Returns new problem solution state object.

An example is given in Section 2.2 (Figure 5 on page 12).

3.11 Hypergraph optimization functions 111

gst free_solver

Free a solution state object. All memory associated withgblution state object,
except from the associated hypergraph and its objects gateoged.

int gst_free_solver (gst_solver _ptr solver);

sol ver Solution state object. Does nothingNBLL.

Returns zero if the operation was successful and non-zbsywise.

An example is given in Section 2.2 (Figure 5 on page 12).

112 3 CALLABLE LIBRARY FUNCTIONS

gst hg_solve

Solve a tree problem for a given hypergraph. In the currerdion, this function
by default computes ainimum spanning tree (MST) in the hypergraph associ-
ated with the given solution state object; depending on #rarpeters given, this
function may also compute an heuristic solution to this fgob

This function can be repeatedly called to solve a (time-gonisg) problem, e.g.,
by setting a CPU time limit for each call. The quality of anyutmn(s) obtained
within the given constraints can be queried by callysg get solver_status().

int gst_hg solve (gst_solver_ptr solver,

int = reason) ;
sol ver Solution state object.
Reason that the solver exited — see the description
reason below. If this parameter iBIULL, the reason for exit-

ing is not returned.

The function return value indicates whether any seriousrgfmvere encountered
in the solution process. If this value is zero it means thegesalan successfully
and without problems — although it might have deliberatelyedhbeen preempted
by the user.

A non-zero function return value indicates the error cagiire solver to exit pre-
maturely. This could for example 8&&ST_ERR_BACKTRACK_OVERFL OMwhich
can happen if one has set the solver to use backtrack seasrhinatance which
Is too big for this purposeGST PARAM SOLVER ALGORI THMV), i.e., more than
32 hyperedges.

When using default parameters (and when not using aboralsigiihen a value of
zero for ther eason parameter means that the solution search space was com-
pletely exhausted. In this case the optimal solution has bmend — unless the
problem was found to be infeasible. However, if the user baarsy of the solver
stopping condition parameters, such as the CPU time litrat aictual reason for

3.11 Hypergraph optimization functions 113

exiting the solution process is returned using tleason parameter. Possible
return values are one of the following:

Macro Name Description
GST_SCOLVE_NORNVAL Normal exit (search space exhausted)
GST_SCOLVE_GAP_TARGET Requested gap target obtained

GST_SCOLVE_LOVNER_BOUND_TARGET Requested lower bound obtained
GST_SCOLVE_UPPER BOUND_TARGET Requested upper bound obtained

GST_SOLVE_NMAX_BACKTRACKS Max. number of backtracks exceeded
GST_SOLVE_MAX_FEASI BLE_UPDATES Max. feasible updates exceeded
GST_SOLVE_ABORT_SI GNAL Abort signal received

GST SOLVE TIMELIMT CPU time limit exceeded
GST_SOLVE_BB_STOP_REQUESTED Caller requested early termination

An example is given in Section 2.2 (Figure 5 on page 12).

114 3 CALLABLE LIBRARY FUNCTIONS

gst get solver status

Return the status of the solution (if any) associated withgiven solution state
object.

int gst_get _solver_status (gst_solver _ptr solver,

i nt * stat us);
sol ver Solution state object.
st at us Status of the current solution (if any).

Returns zero if the operation was successful and non-zbsywise.

The value of thest at us parameter is one of the following:

Macro Name Description
GST_STATUS_OPTI MAL Optimal solution is available
GST_STATUS_I NFEASI BLE Problem is infeasible
GST_STATUS_FEASI BLE Search incomplete, feasible solution(s) know
GST_STATUS_NO_FEASI BLE Search incomplete, no feasible solutions known
GST_STATUS_NO_SCOLUTI ON Solver never invoked/hypergraph changed

>

An example is given in Section 2.2 (Figure 5 on page 12).

3.11 Hypergraph optimization functions 115

gst get solver_hypergraph

Return the hypergraph associated with the given solutite stbject.

gst _hg_ptr gst_get_sol ver _hypergraph (gst_sol ver_ptr sol ver);

sol ver Solution state object.

Pointer to associated hypergraph object.

116 3 CALLABLE LIBRARY FUNCTIONS

gst get solver_param

Return the hypergraph associated with the given solutite stbject.

gst _param ptr gst_get sol ver _param (gst_sol ver _ptr sol ver);

sol ver Solution state object.

Pointer to associated parameter set object.

3.11 Hypergraph optimization functions 117

gst_hg_solution

Retrieve (one of) the best feasible solutions currentlykméor a given solution
state object.

int gst_hg solution (gst_solver_ptr solver,

i nt* nedges,

i nt* edges,

doubl ex | engt h,

i nt rank) ;
sol ver Solution state object.
nedges Number of edges in the returned solution tree
edges Array of edge numbers in the returned solution tree
| engt h Length of the returned tree.

Rank of the solution that should be returned, where O

rank is the best solution (see also discussion below).

Returns zero if the operation was successful and non-zbsywise.

The maximal number of feasible solutions that will be re¢diby the solver is de-
termined by the paramet&ST PARAM NUM FEASI BLE SOLUTI ONS. How-
ever, for a given solution state object, the actual numbésadible solutions may
be less than this maximum — and even zero.

The function return&ST_ERR RANK OUT _OF RANGE whenr ank is less than
0 or greater than or equal to the number of feasible soluawagable.

118 3 CALLABLE LIBRARY FUNCTIONS

Example:

[+ W assume that solver is a solution state object.
This code prints all feasible solutions ordered by their rank. =/

int i, rank = 0;
i nt nedges;
i nt* edges;

doubl e | engt h;

while (1) {
/* Get nunber of edges in this solution.
Exit when no nore solutions are avail able. */
if (gst_hg_solution (solver, &nedges, NULL, NULL, rank) != 0)
br eak;

/+* Get edge indices and |length of solution. =*/
edges = (int *) malloc (nedges * sizeof (int));
gst _hg_solution (solver, NULL, edges, & ength, rank);

/+* Print edge indices and |l ength. =/
printf ("Rank %d: Length is % . Edges:", rank, |ength);

for (i = 0; i < nedges; i++)
printf(" %", edges[i]);

printf("\n");

free (edges);

rank++;

3.11 Hypergraph optimization functions 119

gst get solver_properties

Return the property list associated with a solution stajeaib

gst_proplist_ptr

gst _get _sol ver _properties (gst_solver_ptr solver);
sol ver Solution state object.

Returns the property list.

Example:

/= W assume that solver is defined ...x*/

doubl e | ower _bound;

if (!gst_get _dbl property(gst _get sol ver properties(solver),
GST_PROP_SOLVER_LOWER_BOUND,
&l ower _bound) {

printf("Lower bound for solver object is %\n", |ower_bound);

120 3 CALLABLE LIBRARY FUNCTIONS

3.12 Optimization callback functions

The GeoSteiner API provides the ability to invoke user4gritcode at key points
within the internal GeoSteiner algorithms. This is accasid by means of
callback functions. The user establishes such a callbawostiitn by providing
two pointers:

e cb_f unc: A pointer to a function to call

e cbh_dat a: A pointer to user-specified data to pass to ttef unc func-
tions

Whencb_f unc is aNULL pointer (the default), no callback function is invoked.
The cb_dat a pointer can be anything (in particular, ULL pointer — Geo-
Steiner does nothing with this except pass it as an arguroghetcallback func-
tion.

User-written callback functions are passed the followiggienents: Theher ef r om
argumentindicates the location within GeoSteiner’s maealgorithms from which
the callback function has been invoked. The code in the sisatlback function
should test this parameter to determine whether that péaticalling context re-
quires action. There is a single callback function thatisked from many places
within GeoSteiner, but most callback functions are onlgiiested in one (or a
small number) of these calling contexts.

Thenode argument is an opaque object that provides access to ayafiet-
ternal GeoSteiner data that may be of interest to the cddlhawtion. The Geo-
Steiner API provides various accessor functions that usentide object to ac-
cess these data. Note that thede argument is ephemeral — the object it refers
to existsonly during the execution of the callback function. The user mosat-
tempt to use this pointer in any other context (e.g., by stpitiin a global variable
or in hercb_dat a object or other data structure for later use).

Thecb_dat a argument is the data pointer provided by the user when theackl
function was established.

The GeoSteiner API defines a madsST_BB_CALLBACK_ARGS that encapsu-
lates the argument list declarations above. Using this otaelps to automatically
update the argument lists of user-written callback fumdim the event that future
versions of GeoSteiner pass additions| arguments to cklitoenctions.

3.12 Optimization callback functions 121

Thewher ef r omargument can have one of the following values:

e GST_CALLBACK BB_LP_SOLVED: Invoked each time a node finishes solv-
ing its LP over the constraint pool. (Solving over the coaistr pool is an
iterative process that may invoke the LP solver severalgiomil the cur-
rent LP solution satisfies all constraints in the pool. ThaBback is only
invoked when this iteration completes and all pool constszre satisfied.)

e GST_CALLBACK BB NEW UPPER BOUND: Invoked whenever an improved
upper bound (integer feasible solution) is obtained.

e GST_CALLBACK BB_ROOT_NODE_DONE: Invoked when the root node has
finished. For fractional solutions, this is invoked befoetesting the branch
candidate.

122 3 CALLABLE LIBRARY FUNCTIONS

gst set bb_callback func

Set the branch-and-bound callback function (and datajgiven solution state
object to the given function and data pointers.

int gst_set _bb call back _func (

gst _sol ver_ptr sol ver,
voi d (*cb_func) (GST_BB_CALLBACK ARGS),
voi d * cb_data);

Returns status code, which is zero upon success.

Example:

void my_cal |l back (int wherefrom gst_node ptr node, void * cb_data)

{
printf ("Callback invoked from%l.\n", wherefronj;
}

struct nydata data;

gst_set _bb_cal | back_func (sol ver, ny_call back, &data);

3.12 Optimization callback functions 123

gst_node get solver

A callback node accessor function to get the solution stiajecbon whose behalf
this callback function has been invoked.

gst _sol ver_ptr gst_node_get _sol ver (gst_node_ptr node);

Returns solution state object for which the callback fumcivas invoked.

Example:

void my_cal | back (GST_BB_CALLBACK ARGS)
{

gst_sol ver _ptr sol ver;
sol ver = gst_node_get _sol ver (node);

124 3 CALLABLE LIBRARY FUNCTIONS

gst node get z

A callback node accessor function to get the LP objectivaeralssociated with
the given node.

doubl e gst _node_get z (gst_node_ptr node);

The node accessor object passed to the callback func-

node tion by GeoSteiner.

Returns the LP objective value.

Example:

void my_cal | back (GST_BB_CALLBACK ARGS)
{

doubl e Z;

z = gst_node_get _z (node);

3.12 Optimization callback functions 125

gst node get |b_status

A callback node accessor function to get the current nodevser bound status.

I nt gst_node_get | b_status (gst_node_ptr node);

Returns an integer having one of the following values:

o GST_LB_STATUS_I NFEASI BLE
GST_LB_STATUS_CUTOFF

GST_LB_STATUS | NTEGRAL

GST_LB_STATUS_FRACTI ONAL

GST_LB_STATUS_PREEMPTED

Example:

void my_cal | back (GST_BB_CALLBACK_ ARGS)

{

i nt status;
status = gst_node _get | b _status (node);
switch (status) {

case GST_LB STATUS | NFEASI BLE: c. br eak;
case GST_LB STATUS CUTOFF: c. br eak;
case GST_LB STATUS | NTEGRAL: - br eak;
case GST_LB STATUS FRACTI ONAL: - br eak;
case GST_LB STATUS PREEMPTED: - br eak;
default: abort ();

}

126 3 CALLABLE LIBRARY FUNCTIONS

gst_node get node index

A callback node accessor function to get the index of theetiimode.

I nt gst_node_get _node_i ndex (gst_node_ptr node);

Returns the integer node index. Index O represents the oo, nwvith child nodes
having positive indices. An index of -1 indicates a candidztild node during
branch variable selection.

Example:

voi d ny_cal | back (GST_BB_CALLBACK ARGS)

{

i nt node_i ndex;
node_i ndex = gst_node_get node_i ndex (node);
printf ("Node %l\n", node_index);

}

3.12 Optimization callback functions 127

gst node get parent_node index

A callback node accessor function to get the index of thergar@de of the current
node.

i nt gst_node_get parent _node_i ndex (gst_node_ptr node);

Returns the integer index of the parent node. The pareneabitt node has index
-1.

Example:

voi d ny_cal | back (GST_BB_CALLBACK ARGS)

{

i nt parent_node_i ndex;
par ent _node_i ndex = gst_node_get parent_node_i ndex (node);
printf ("Parent node %\ n", parent_node_i ndex);

}

128 3 CALLABLE LIBRARY FUNCTIONS

gst_ node get node depth

A callback node accessor function to get the depth of theeatirrode within the
branch-and-bound tree. The root node has depth zero.

i nt gst_node_get node_depth (gst_node_ptr node);

Returns the depth of the current node.

Example:

void my_cal | back (GST_BB_CALLBACK ARGS)

{

i nt dept h;
depth = gst_node_get _node_depth (node);
printf ("Node depth %\ n", depth);

}

3.12 Optimization callback functions 129

gst_node get node branch_var

A callback node accessor function to get the index of theifyaal variable that
was branched upon to create the current node from its paféd.is -1 for the
root node.

i nt gst_node_get node_branch_var (gst_node_ptr node);

Returns the branch variable used to create the current node.

Example:

voi d ny_cal | back (GST_BB_CALLBACK ARGS)

{

int bvar;
bvar = gst_node_get _node_branch_var (node);
printf ("Branch variable %\n", bvar);

}

130 3 CALLABLE LIBRARY FUNCTIONS

gst_node get node branch_direction

A callback node accessor function to get the direction irclithe branch variable
was constrained to create the current node from its pareual#e of O indicates
the var=0 branch. A value of 1 indicates the var=1 branchs 0 for the root

node.

i nt gst_node_get node_branch_direction (gst_node_ptr node);

Returns the direction of the branch used to create the dunoete.

Example:

void my_cal | back (GST_BB_CALLBACK_ ARGS)

{

int dir;
dir = gst_node_get node_branch_direction (node);
printf ("Branch direction %\ n", dir);

}

3.12 Optimization callback functions 131

gst_node get Ip_index

A callback node accessor function to get the number of LRsedaht the current
node. (The separation algorithms are run on the solutioraoh esuch LP. If
violated constraints are found, they are added to the LPwikithen re-solved,
which increments this index.)

i nt gst_node_get | p_index (gst_node_ptr node);

Returns the index of the most recently solved LP at the currede. The first LP
solved receives an index of zero.

Example:

void my_cal | back (GST_BB_CALLBACK ARGS)

{

int |p_index;
| p_index = gst_node_get | p_i ndex (node);
printf ("LP %\ n", |p_index);

}

132 3 CALLABLE LIBRARY FUNCTIONS

gst_node get solution

A callback node accessor function to get the LP solutionoreassociated with
the given node.

i nt gst_node_get _solution (gst_node_ptr node, double * Xx);

The node accessor object passed to the callback func-
tion by GeoSteiner.

Address of an array ofloubl e having sufficiently
many elements to receive the solution vector.

node

X

Returns an error code, which is zero upon success.

Example:

void my_cal | back (GST_BB_CALLBACK ARGS)

{

i nt nedges;
gst_sol ver _ptr sol ver;
gst _hg_ptr H;

doubl e X;

/* Query nunber of edges in problem =/

sol ver = gst_node_get _sol ver (node);

H = gst_get _sol ver _hypergraph (sol ver);

gst _get _hg_edges (H, &nedges, NULL, NULL, NULL);
/+ Allocate array for solution vector. x/

x = mall oc (nedges * sizeof (double));

gst _node_get _sol uti on (node, x);

1.‘.rée (x);

3.12 Optimization callback functions 133

gst node get Ib

A callback node accessor function to get the current noaeov of lower bounds.

int gst _node get Ib (gst_node ptr node, double * |b);

The node accessor object passed to the callback func-
tion by GeoSteiner.

Address of an array ofloubl e having sufficiently
many elements to receive the lower bound vector.

node

| b

Returns an error code, which is zero upon success.

Example:

void my_cal | back (GST_BB_CALLBACK ARGS)

{

i nt nedges;
gst_sol ver _ptr sol ver;
gst_hg_ptr H

doubl e | b;

[+ Query number of edges in problem =x/

sol ver = gst_node_get _sol ver (node);

H = gst_get _sol ver _hypergraph (sol ver);

gst _get _hg edges (H, &nedges, NULL, NULL, NULL);
[+ Al'locate array for |ower bound vector. */

Ib = mall oc (nedges * sizeof (double));

gst_node_get | b (node, |b);

free (1b):

134 3 CALLABLE LIBRARY FUNCTIONS

gst node get ub

A callback node accessor function to get the current noae'sov of upper bounds.

int gst _node _get ub (gst_node ptr node, double * ub);

The node accessor object passed to the callback func-
tion by GeoSteiner.

Address of an array ofloubl e having sufficiently
many elements to receive the upper bound vector.

node

ub

Returns an error code, which is zero upon success.

Example:

void my_cal | back (GST_BB_CALLBACK ARGS)

{

i nt nedges;
gst_sol ver _ptr sol ver;
gst_hg_ptr H;
doubl e ub;

/* Query nunber of edges in problem =/

sol ver = gst_node_get _sol ver (node);

H = gst_get _sol ver _hypergraph (sol ver);

gst _get hg edges (H, &nedges, NULL, NULL, NULL);
/+* Allocate array for upper bound vector. =/

ub = mall oc (nedges * sizeof (double));

gst _node_get _ub (node, ub);

free (ub):

3.13 Message handling functions 135

3.13 Message handling functions

All output messages from GeoSteiner are passed througkcasaollable chan-
nels. A given channel may write its output to more than on@uuscreen/files).
Channels have typgst channel ptr.

In this section we describe the functions for creating aeeifrg channels, for
adding output (screen/files) to a channel, and the basidi@nscfor writing to
channels.

136 3 CALLABLE LIBRARY FUNCTIONS

gst create channel

Create a channel with an optional set of options. By defauiput is unformat-
ted. In the current version, the only formatted output istBofpt; see function
gst_ channel setopts()for an example of how to activate Postscript formatting.
Consultgeost ei ner . hfor the detailed structure gfst channel opti ons.

gst _channel _ptr
gst _create_channel
(const gst _channel _options* chanopts,
i nt* status);

Channel options (ifNULL then default options are
used).
st at us Status code (zero if successful).

chanopt s

Returns the new channel object.

Example:

[+ Create a channel with default options.
I gnore returned status. =*/

gst _channel _ptr chan;

chan = gst_create_channel (NULL, NULL);

3.13 Message handling functions

gst free_channel

137

Free a channel and all its destinations.

int gst_free_channel (gst_channel _ptr chan);

chan Channel object. Does nothingNULL.

Returns zero if the operation was successful and non-zbsywise.

Example:

/= Assume that chan is an existing channel object =*/
gst_free_channel (chan);

[+ Al menory used by chan is now freed =*/

138 3 CALLABLE LIBRARY FUNCTIONS

gst channel getopts

Get channel options.

i nt gst_channel _getopts
(gst _channel _ptr chan,
gst _channel _options* options);

chan Channel opbject.
Pointer to the channel option structure where channel
options should be returned.

opti ons

Returns zero if the operation was successful and non-zheswise.

Example:

/+* Assume that chan is a channel =*/
gst _channel _opti ons chanopts;

/= CGet options and active Postscript output =/
gst _channel _getopts (chan, &chanopts);
chanopts. flags | = GST_CHFLG POSTSCRI PT;

gst _channel _setopts (chan, &chanopts);

3.13 Message handling functions 139

gst channel setopts

Set channel options.

I nt gst_channel _setopts
(gst _channel _ptr chan,
const gst_channel _options* options);

chan Channel opbject.
Pointer to the channel option structure that contains
new channel options.

opti ons

Returns zero if the operation was successful and non-zbsywise.

Example:

[+ Assune that chan is a channel =*/
gst _channel _opti ons chanopts;

/= Get options and active Postscript output =/
gst _channel _getopts (chan, &chanopts);
chanopts. flags | = GST_CHFLG POSTSCRI PT;

gst _channel _setopts (chan, &chanopts);

140 3 CALLABLE LIBRARY FUNCTIONS

gst_ channel .add._file

Add a file destination to a channel.

gst _dest _ptr
gst _channel _add _file (gst_channel _ptr chan,

FI LEx fp,

I nt * status);
chan Channel object.
fp File handle.
st at us Status code (zero if successful).

Returns the new destination object (of tygpet dest ptr).

Example:

[+ Setup a channel for stdout =*/
gst _channel _ptr chan;

chan = gst_create_channel (NULL, NULL);
gst _channel _add file (chan, stdout, NULL);

3.13 Message handling functions 141

gst channel add_functor

Add a function as destination to a channel.

typedef size t
gst _channel func (const charx buf,
size_t cnt,
voi d* handl e) ;
gst _dest _ptr
gst _channel _add_functor

(gst _channel _ptr chan,
gst _channel func+ func,
vVoi d* handl e,
i nt* status);
chan Channel object.
func Function that should be added as destination.
Handle used for passing error codes from the function
handl e N
back to the application.
st at us Status code (zero if successful).

Returns the new destination object (of tyget _dest _pt r).

142 3 CALLABLE LIBRARY FUNCTIONS

Example:

static void

output text to GJ (void = handl e,
const char = text,
size_ t nbyt es)
{
W dget = wi dget = handl e;
my_gui_wite text to text_w dget (w dget, text, nbytes);
}
int main (int argc, char =*xargv)
{
i nt st at us;
W dget = wi dget = ny_gui _create_text_w dget ();
gst_channel _ptr mychan = gst_create_channel (NULL, NULL);
gst _param ptr myparm = gst_create_param (NULL) ;

/+* Add functor to wite output to GJ w ndow. =/
gst _channel _add_functor (mychan,
output _text _to _GU,
wi dget ,
&st at us) ;
gst _set _cnh_param (myparm
GST_PARAM PRI NT_SCOLVE_TRACE,
nychan) ;
/* Problens solved using nyparmw || send =/
/* trace output to the GU w ndow. =*/

3.13 Message handling functions 143

gst channel rmdest

Remove a destination from a channel.

i nt gst_channel _rndest (gst_dest_ptr dest);

dest Destination that should be removed.

Returns zero if the operation was successful and non-zbsywise.

Example:

/= Assume that dest is a destination object */
gst _channel _rndest (dest);

/= Destination object dest is nowrenoved fromits channel =/

144 3 CALLABLE LIBRARY FUNCTIONS

gst channel write

Write a string to all destinations in a channel.

i nt gst_channel _wite (gst_channel _ptr chan,

const char* t ext,
size t nbyt es) ;
chan Channel object.
t ext Buffer with text that should be written.
nbyt es Number of bytes in buffer.

Returns zero if the operation was successful and non-zbseywise.

Example:

/* Assume that chan is a channel. =x/
charx hello = "Hello, World!'\n";
gst_channel _write (chan, hello, strlen(hello));

3.13 Message handling functions 145

gst_channel printf

Print a formatted string to all destinations in a channel.

i nt gst_channel _printf (gst_channel _ptr chan,
const char~* formt,
.) _GST_PRINTF_ARGS (2, 3);

chan Channel object.
f or mat Printf formatting string.
Arguments for formatting string.

Returns zero if the operation was successful and non-zbsywise.

Example:

I+ Let chan be a channel, and let il and i2
be two integer variables. */
gst _channel _printf (chan, "il1l =% i2 =%\n", il, i2);

146 3 CALLABLE LIBRARY FUNCTIONS

3.14 Input and output functions

A number of functions are provided for input and output of égmaphs. The
input/output format can be chosen using parameters. $caiarmation can be
associated with input points, and numbers can be printediscaled using this
information.

3.14 Input and output functions 147

gst create scaleinfo

Create a scaling information object.

gst _scale_info _ptr gst create_scale_info (int* status);

st at us Status code (zero if successful).

Returns the new scaling information object.

Example:

[+ Create a new scaling information object
and use it to hold scaling infornation for
a set of points read fromstdin. =*/

int n;

doubl ex terms;

gst_scale_info_ptr scinfo;

scinfo = gst_create_scale_info (NULL);
n = gst_get _points (stdin, 0, &erns, scinfo);

148 3 CALLABLE LIBRARY FUNCTIONS

gst free_scaleinfo

Free a scaling information object.

int gst free scale info (gst_scale_info _ptr scinfo);

scinfo Scaling information object that should be freed.

Returns zero if the operation was successful and non-zbheswise.

Example:

[+ Assume that scinfo is a scaling information object =/
gst_free_scale_info (scinfo);

[+ Al menory used by scinfo is now freed */

3.14 Input and output functions 149

gst get points

Reads a point set from a file (e.g., stdin). Point coordinshesild be separated
by whitespace. Reads until end-of-file or until a specifiechber of points have
been read.

A scaling information object can be associated with the Spbmmts that are read;
if such an object is passed as an argument, this functiomptteto find an ap-
propriate scaling for the points to maximize the accuracthefinternal (double)
representation. If the scaling information objediid_ L, no scaling is performed.

i nt gst_get_points (FlLEx fp,
i nt maxpoi nt s,
doubl e** poi nt s,

gst _scale_info_ptr scinfo);

fp Input file to read from.
. Maximum number of points to read (if zero then read
maxpoi nt s : :
until end-of-file).
. Array containing read points (which must be allocated
poi nt's) _
by the useexcept whennmaxpoi nts = 0).
scinfo Scaling information object.

Returns the number of read points.

Example:

/+ Read a set of points fromstdin (until end-of-file).
A scaling information object is used. =/

int n;

doubl ex ternms;

gst _scale_info_ptr scinfo;

scinfo = gst_create_scale_info (NULL);
n = gst_get_points (stdin, 0, &ernms, scinfo);

150 3 CALLABLE LIBRARY FUNCTIONS

gst_ compute scale info_digits

Set up various parameters needed for outputting scaledlicabes. Coordi-
nates/distances are printed with the minimum fixed pregigibenever this gives
the exact result, that is, if all terminal coordinates aregnal, they should al-
ways be written without a decimal point. Otherwise we wilinprthe coordi-

nates/distances with full precision.

i nt gst_conpute_scale_info_digits
(int nt erns,
doubl ex* terns,
gst _scale_info_ptr scinfo);

nt er s Number of terminals.
terns Terminals in an array of doubles(y1, z2, ¥, . - .)
scinfo Scaling information object that should be modified.

Returns zero if operation was successful and non-zerowiser

Example:

[+ Assume that terms holds a set of n terminals
and that scinfo is an associated scaling
i nformati on object. Find the mni mumnunber of digits
necessary when printing unscal ed coordi nates. =*/
gst_conpute_scale_info digits (n, terns, scinfo);

3.14 Input and output functions 151

gst unscale to_string

Convert a given internal scaled coordinate to a printabkcaled ASCII string.
The internal form is in most cases an integer (to eliminateenic problems), but
the unscaled data may involve decimal fractions.

char* gst_unscale_to_string
(char = buf fer,
doubl e val ,
gst _scale_info_ptr scinfo);

Write unscaled string to this buffer. It should be allo-
buf f er

cated to hold at least 32 characters.
val Double value that should be unscaled.
scinfo Scaling information object.

Returns a pointer to a string holding the unscaled value.

Example:

/= Print a set of nternminals in array terns
to channel chan. Scaling information is
given by scinfo. =*/

int i;

char buf 1] 32], buf2[32];

for (i =0; i <n; i++) {
gst _unscale to_string (bufl, terns[2*i], sci nfo);
gst _unscale to_string (buf2, terns[2*i+1], scinfo);
gst_channel _printf (chan, "(%, %)\n", bufl, buf2);

152 3 CALLABLE LIBRARY FUNCTIONS

gst unscale to_double

Convert a given internal form coordinate to an unscaled koub

doubl e gst _unscal e_to_doubl e
(doubl e val ,
gst _scale_info_ptr scinfo);

val Double value that should be unscaled.
scinfo Scaling information object.

Returns an unscaled double approximation.

Example:

/= Compute an unscal ed array of termi nal coordinates
froma scaled set of nternminals in array terms.
Scaling information is given by scinfo. */

int i;

doubl ex unscal ed_t erns;

unscal ed_terns = (double *) malloc (2 * n * sizeof (double));
for (i =0; i < 2xn; i++) {

unscal ed_ternms[i] = gst_unscale_to _double (ternms[i],
sci nfo);

3.14 Input and output functions 153

gst load _hg

Load a hypergraph from an input file. The function createsvamgergraph and
adds the vertices and edges read from the input file. The filedbmust be one
of the FST data formats given in Appendix E.

gst_hg ptr gst | oad _hg (FILE* fp,
gst _param ptr param
I nt* status);
fp Input file to read from.
par am Parameter set (currently not used).
st at us Status code (zero if successful).

Returns the hypergraph that is read.

Example:

/+* Load a hypergraph fromstdin =/
gst_hg_ptr H
H = gst_load_hg (stdin, NULL, NULL);

154 3 CALLABLE LIBRARY FUNCTIONS

gst save hg

Print a hypergraph to a file. The print format can be specifigcoérameter
GST_PARAM SAVE_FORNVAT.

int gst_save _hg (FILEx fp,
gst _hg_ptr H,
gst _param ptr paran);

fp Print to this file.
H Hypergraph that should be printed.
par am Parameter selNUL L=default parameters).

Returns zero if the operation was successful and non-zbsywise.

Example:

[+ Print a hypergraph Hto stdout using
the default print format =/
gst _save_hg (stdout, H, NULL);

3.15 Miscellaneous functions 155

3.15 Miscellaneous functions

In this section we describe a few miscellaneous functiorg, @synchronous
functions that may be used by signal handlers.

156 3 CALLABLE LIBRARY FUNCTIONS

gst deliver_signals

This function is designed to be safely callable from a sidraaddler. The given
signals are delivered to the given solver, which respondsem at some point in
the near future. The signals parameter is the bit-wise ORhefay more special
signal values defined below.

void gst _deliver _signals (gst_solver _ptr solver,

I nt gstsignal s);

sol ver Solution state object.
Bit vector defining the signals that should be delivered
gstsignals to the solver; see table below for a list of possible

signals.

Returns nothing.

The following is a list of possible signals that can be deteketo the solver:

Macro Name Description

GST_SI G_LABORT Abort computation

GST_SI G_FORCE_BRANCH Stop cutting and force a branch

GST_SI G_.STOP_TEST_BVAR Stop testing branch variables and
use the best one seen so far

GST_SI G_STOP_SEP Abort the separation routines
and continue with all cuts
discovered so far

Example:

/= Assume that solver is a solution state object.
Deliver a signal to force a branch. =x/
gst _deliver_signals (solver, GST_SIG FORCE_BRANCH);

157

4 Stand-Alone Programs

Below we first give some examples of program invocations s Thiollowed by
a complete description of each stand-alone program. Natetkhort description
of each program also can be obtained by running the prograimtke-h option.

The following command will generate a set of 70 random poamis compute a
rectilinear Steiner minimal tree for it:

rand_points 70 | rfst | bb
The following computes an Euclidean Steiner minimal tree
rand_points 70 | efst | bb

and the following computes an octilinear Steiner minimegtfor the same set of
points

rand_points 70 | ufst | bb

Note that randpoints always generates the same sequence of points uniess g
the-r or-soption.

The following (Bourne shell) examples can be used to geaexanplete printable
postscript plots for these problem instances:

(cat prelude.ps; rand_points 70 | rfst | bb) >rsm70. ps
(cat prelude.ps; rand_points 70 | efst | bb) >esnt70. ps
(cat prelude.ps; rand_points 70 | ufst | bb) >usm 70. ps

The complete set of FSTs can also be plotted as follows:

(cat prelude.ps; rand_points 70 | rfst | plotfst -fgo) >rfsts.ps
(cat prelude.ps; rand_points 70 | efst | plotfst -fgo) >efsts.ps
(cat prelude.ps; rand_points 70 | ufst | plotfst -fgo) >ufsts.ps

A reduced Hanan grid in the OR-library format (for the renghr problem) can
be generated as follows:

158 4 STAND-ALONE PROGRAMS

rand_points 70 | rfst | fst2graph
By pruning the set of FSTs, an even more reduced grid grapbegenerated:
rand_points 70 | rfst | prunefst | fst2graph

An Euclidean Steiner minimal tree fortber | i n52. t sp instance from TSPLIB
can be constructed and displayed as follows (assumingthéiteber | i n52. t sp
is present in your GeoSteiner directory):

(cat prelude.ps; lib_points <berlinb2.tsp | efst | bb) | gv -

159

rand_points

Generates random point sets. There is considerable fiéxibichoosing the size,
precision and scaling factor for the generated point coateis. By default, the
coordinates are almost always real numbers, uniformlyidiged in the interval
[0,1) (see below for exceptions to this rule). Several pseuddeangenerator
algorithms are supported. The number of digits per cootdiflaoth default and
maximum) vary by generator, as described below. The folgwaptions are per-

mitted:
-b

-d N

-0 G
-k KEY

_p N
-r

-s FILE

Binary mode. Generates coordinates that are uniformly dis-
tributed doubles in0, 1), outputting them with full precision.
Generate decimal numbers having N digits. (See below fautief
and maximum values, which vary by generator.)

Use pseudo-random number generator G. (See below.)

Modify default generator seed with KEY, which can be arlitra
text.

Make N of the coordinate digits be fractional (i.e., to thghtiof
the decimal point). Default is for all digits to be fractiona
Randomize. Use an initial seed chosen from the current date a
time.

If FILE exists, read the generator and its initial seed from file.
When finished, write the generator and final seed to this file.

The-g G argument allows choosing between the following pseudodgannum-
ber generators:

Default : Max

G Digits Description

0 4:5 The “legacy” random generator. It is based on the orlgina
PDP-11 Unix rand(3) function (with all of its ugly warts
intact). Its randomness is quite poor.

1 7:9 The “new” random generator. It uses a 64-bit shift regis-
ter with XOR feedback, and produces a reasonable level of
randomness.

2 7:19 The “"AES-256" random generator. It uses the AES-256

block cipher as its fundamental entropy source, producing
truly excellent randomness. GeoSteiner must be built with
GMP in order for this generator to be available.

160 4 STAND-ALONE PROGRAMS

If no generator is specified, ranbints will use generator 2 (AES-256), if avail-
able. Otherwise, generator 1 is used. The default genetatobe overridden
using the RANDPOINTS. DEFAULT_GENERATOR environment variable.

Note that using -s to load an intial seed from an existing $iée=tas the effect of
specifying the generator, since there is a data field witierseed file that specifies
the generator. (This data field is necessary because thatofrthe seed file state
information is different for each generator.) If both -g asdare specified, then
either (1) the seed file musibt yet exist, or (2) the generator specified with -g
must match that specified within the seed file.

Previous versions of rangdoints only supported generators 0 and 1, with the de-
fault being to use generator 0 to generate 4-digit integerdinates. As a special
case, when using generator 0 (legacy) with neither the -dmarguments, the
current version of rangboints also generates 4-digit integers, thereby replicat-
ing the behavior of previous versions of rapdints. Users who prefer the point
sets produced by previous versions of rgraints can obtain these same, familiar
point sets without any additional command line argumemtgpbi by setting the
environment variable

RAND_POINTS DEFAULT_GENERATOR=0

161
lib _points

Reads a point set in either TSPLIB or OR-library format frawhirsand converts
the input to point coordinates as requireddsyt, rfst or ufst. The program auto-
matically determines the input file type. The program hasapti®mnal parameter
(which has value 1 by default) that specifies which instanamlyer should be
extracted from an OR-library file.

162 4 STAND-ALONE PROGRAMS

efst

Reads a point set from stdin, and generates a set of Eucli®as that contains
at least one Euclidean Steiner minimal tree. The followipgians are permitted:

-dtxt Description of problem instance.

-g Use greedy heuristic instead of Smith-Lee-Liebman (mareti
consuming but generates fewer eg-points).

-k K Generate only FSTs having at most K terminals. This can save
considerable time but can also eliminate FSTs that must theein
optimal Steiner tree (i.e., solutions can become suboptima

-m M Use multiple precision. Larger M use it more. Default is M=0
which disables multiple precision. The use of this optiajquiees
that GeoSteiner be configured to use the GNU Multi-Precision
arithmetic library (GMP). (See the INSTALL file for more de-
tails).

-t Print detailed timings to stderr.

-v N Generate the output in version N of the FST data format. Sup-
ported versions are 0, 1, 2 and 3. Version 3 is the default.

-ZPV Set parameter P to value V, e.gZEPS MULT FACTOR 64
sets the epsilon multiplication ~ factor to 64
(GST_PARAM EPS_MULT_FACTOR = 64).

163

rfst

Reads a point set from stdin, and generates a set of reatilf&Ts that contains
at least one rectilinear Steiner minimal tree. The follaywrptions are permitted:

-dtxt Description of problem instance.

-k K Generate only FSTs having at most K terminals. This can save
time but can also eliminate FSTs that must be in the optimal
Steiner tree (i.e., solutions can become suboptimal).

-t Print detailed timings to stderr.

-v N Generate the output in version N of the FST data format. Sup-
ported versions are 0, 1, 2 and 3. Version 3 is the default.

-ZPV Set parameter P to value V, e.gZl NCLUDE_CORNERS 0
disables the generation of corner points
(GST_PARAM | NCLUDE CORNERS = 0)

164 4 STAND-ALONE PROGRAMS

ufst

Reads a point set from stdin, and generates a set of unifesriénted FSTs that
contains at least one uniformly-oriented Steiner minimegt The following op-
tions are permitted:

-dtxt Description of problem instance.

-k K Generate only FSTs having at most K terminals. This can save
time but can also eliminate FSTs that must be in the optimal
Steiner tree (i.e., solutions can become suboptimal).

-l L Number of orientations (default: 4).

-t Print detailed timings to stderr.

-v N Generate the output in version N of the FST data format. Sup-
ported versions are 0, 1, 2 and 3. Version 3 is the default.

-ZPV Set parameter P to value V, e.gZl NCLUDE CORNERS 0
disables the generation of corner points
(GST_PARAM .| NCLUDE_CORNERS = 0)

165

bb

The FST concatenation algorithm using branch-and-cutlt@sm IP formulation
of the problem. The FST data is read from stdin and a plot ofst¥lation is
produced on stdout in an “incomplete” postscript form. Anpaible postscript file
can be obtained bgrepending the file "prelude.ps” to the program output. If you
want this file to be included in some other document then itle@gbounding box.
This can be obtained by running it throughs2epgGhostScript 6.01 or later).

Various trace messages appear in the output as postscmpheots. (The name
bb is for branch-and-bound — note that the nalbeas already taken on Unix.)
The following options are permitted:

-2 Omit all 2-terminal Subtour Elimination Constraints (SEC’
from the initial constraint pool.

-b Disable "strong branching”, which chooses branching \xdes
very carefully.

-B N Set branch variable selection policy. N=0: naive max of mins
N=1: smarter lexicographic max of mins (default), N=2: prod
of improvements.

-c P Pathname of checkpoint file to restore (if present) and/datg
The files are actually named P.chk and P.ub, with temporay fil
named P.tmp, P.new and P.nub.

-f The only information dumped is the FSTs in the best solu-
tion found. This can then be given to dumpfst/plotfst. E.g.
rand points | efst | bb -f | dunpfst -sl

-H Force the use of the backtrack search. This will result inreore
if there are more than 32 edges. Note that there is still & bimi
the number of backtrack&6T_PARAM_MAX_BACKTRACKS). If
using this option one might also want to set backtrack limit t
infinity (otherwise an optimal solution might not be found).

-IT Sets a CPU time limit (in seconds) of T. Example CPU
times are: -1 3days2hour s30m nut esl5seconds, - |
1000seconds, -1 1000 and-1 2h30m

-m P Merge constraints from checkpoint file P with those of therfor
lation.

166 4 STAND-ALONE PROGRAMS

-n N Output N best solutions (default: 1).

-r Plot the optimal LP relaxation solution for the root nodet, dxly
if it is fractional.
-R When optimal root LP relaxation is obtained, determine fte

LP iteration the number of final constraints whose first \tiola
occurred during that iteration.

-t Do not include the title string in the postscript output (name,
length and time).

-TN Search N times more thoroughly for strong branching vagsbl

-uB Specify B to be the initial upper bound assumed by the branch-
and-bound.

-zN Set the target number of pool non-zeros to N.

-ZPV Set parameter P to value V, e. gZGAP_TARGET 0.5 sets
GST_PARAM GAP_TARGET = 0. 5.

When configured to use CPLEX, the following additional opti® permitted:
-aM N Force CPLEX allocation to be at least M rows and N non-zeros.
When configured to udep_solve, the following additional options are permitted:

-p Turn on the use of perturbations. This is the method that
| p_solve 2.3 uses to deal with degenerate problems.

-s Turn on the use of problem scaling. Once again a rather crude
attempt to address problems that are badly behaved nuitherica

The following “grep-able” items appear in the output witpiostscript comments,
and may be potentially useful:

@ The instance description from the FST data file.

@ Summary statistics:

— Number of terminals
— Number of FSTs/hyperedges

167

Number of branch-and-bound nodes

Number of LPs solved

Phase 1 CPU time (FST generation)
Phase 2 CPU time (branch-and-cut)
Total CPU time

@ LP/IP statistics:

Length of optimal Steiner tree

Length of LP relaxation at root node

Percent of LP/IP "gap”

— # of LPs solved for root node

— CPU time for root node

— Percent reduction of SMT over MST

@ Initial constraint pool statistics:

— Number of rows in pool

— Number of non-zeros in pool

— Number of rows in LP tableau

— Number of non-zeros in LP tableau

@ Constraint pool statistics for root node:

— Number of rows in pool

— Number of non-zeros in pool

— Number of rows in LP tableau

— Number of non-zeros in LP tableau

@ Final constraint pool statistics:

— Number of rows in pool
— Number of non-zeros in pool
— Number of rows in LP tableau

168 4 STAND-ALONE PROGRAMS

— Number of non-zeros in LP tableau
@ Statistics on FSTs occurring in the SMT:

— Number of FSTs in SMT
— Average FST size in SMT
— Maximum FST size in SMT
— Number of FSTs of size 2 in SMT
— Number of FSTs of size 3in SMT
— Number of FSTs of size 4 in SMT
— Number of FSTs of size 5 in SMT
— Number of FSTs of size 6 in SMT
— Number of FSTs of size 7 in SMT
— Number of FSTs of size 8 in SMT
— Number of FSTs of size 9 in SMT
— Number of FSTs of size 10 in SMT
— Number of FSTs of size- 10 in SMT
@C Coordinates of a Steiner point in the optimal solution. Theirr points
form a "certificate” of the optimal solution since the optinsalution can

be reconstructed by computing a minimum spanning tree obtiggnal
terminals and these Steiner points.

@ Deletion of slack rows from LP tableau.

@O/ @QLN This pair of messages is emitted every time the lower bounsl tighter.
They contain the CPU time and the old/new bound, as well aslthiaew
gap percentages. These can be plotted (i.e., using gnuplgtaphically
show the convergence rate of the algorithm.

@N\C Creation of a new branch-and-bound node:
— Node number

— Parent node number
— Branch variable

169

— Branch direction
— Objective value (the real LP objective is at least this value

@PAP Adding "pending” pool constraints to the LP tableau.
@°L State of LP tableau constraints.

@MEM Constraint pool memory status. Printed before and aften gadbage col-
lection, and after adding new/initial constraints to thelpo

@ Experimental output from -R switch.
@RC Experimental output from -R switch.

@QJO/ @QUN This pair of messages is emitted every time the upper boutsltiggter.
They contain the CPU time and the old/new bound, as well aslthiaew
gap percentages. These can be plotted (i.e., using gnuplgtaphically
show the convergence rate of the algorithm.

170

prunefst

4 STAND-ALONE PROGRAMS

Reduce the set of FSTs generateddsst, rfst or ufst while still retaining at
least one optimal solution among the remaining set of FST8s program can
reduce the time to solve the FST concatenation problem derahbly, but is only
worthwhile for large instances. The following options aesmitted:

-b

-d txt
-t

-v N

-ZPV

Use linear space and logarithmic time lookup for BSDs.
Description of problem instance.

Print detailed timings to stderr.

Generate the output in version N of the FST data format. Sup-
ported versions are 0, 1, 2 and 3. Version 3 is the default.

Set parameter P to value V, e. gZEPS_MIJLT_FACTOR 64
sets the epsilon multiplication factor to 64
(GST_PARAM EPS _MULT FACTOR = 64).

171

dumpfst

Dumps readable information about generated FSTs. Thersvartorms of this
command, each producing a different type of output. The fimsh of the com-
mand is obtained whenever tkgkor -h switches are used. These switches provide
summary informatiommnly — FST statistics, and/or a histogram of FST sizes..

-d Display statistics about FSTs.

-h Display histogram of FST sizes.

-a Include all FSTs in histogram, even those that were “prursd”
the FST generator or a pruning algorithm.

The second form of the command is obtained when neitheor -h are specified.
This form dumps all of the FSTs in a readable form. Each lineudput represents
a single FST, listing its terminal numbers (0 through N-I1)eTerminals are listed
in the same order that they occur in the actual data strugtatdough they can
optionally be sorted in numeric order. The length of each E&T optionally be
appended to each line:

-l Append the FST length to each output line.

-s Terminals of each FST are listed in numeric (sorted) ordstesd
of internal order.

-a Include all FSTs, even those that were “pruned” by the FSF gen
erator or a pruning algorithm.

172 4 STAND-ALONE PROGRAMS

plotfst

Program to generate various plots of FSTs in an FST data fiead&®the FST
data file on stdin and produces postscript on stdout for thes rhdicated by the
command line switches:

-f Prints all FSTs, 12 FSTs per page.

-g Prints FSTs in “grouped” fashion, 12 groups per page.
-0 Prints all FSTs overlaid together.

-p Prints only the points, no FSTs.

Note that the filgor el ude. ps must beprepended to the output of this program
in order to have a complete postscript document.

173

fst2graph

Reads FSTs from stdin and produces an (ordinary) graph owntstdpresenting
the FSTs. For the rectilinear problem, the FSTs are ovedaithe Hanan grid
and the remaining Hanan grid is output. For the Euclideamlpro the set of
all terminals and Steiner points in all FSTs forms the setesfizes and the line
segments form the edges. Output data is printed in the QRAliformat by
default, but the SteinLib format is also supported:

-b N For version 4 output (STEINLIBNT), generate integer edge
weights as unsigned N-bit integers (default is N=64).

-d txt Description of problem instance.

-e Generate the edge graph for the rectilinear problem.

-u Output unscaled (fractional) data for the rectilinear peahn

-v N Generate version N format output.

174 REFERENCES

References

[1] A. B. Kahng and G. Robins. A New Class of Iterative Steilheze Heuristics
with Good PerformancelEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 11(7):893-902, 1992.

[2] B. K. Nielsen, P. Winter, and M. Zachariasen. An Exact @tithm for the
Uniformly-Oriented Steiner Tree Problem. Bnoceedings of the 10th Euro-
pean Symposiumon Algorithms, Lecture Notesin Computer Science, volume
2461, pages 760—772. Springer, 2002.

[3] J. S. Salowe and D. M. Warme. Thirty-Five-Point Rectl#m Steiner Mini-
mal Trees in a DayNetworks, 25(2):69-87, 1995.

[4] J. M. Smith, D. T. Lee, and J. S. Liebman. Awnlogn) Heuristic for
Steiner Minimal Tree Problems on the Euclidean MetNetworks, 11:23—
29, 1981.

[5] D. M. Warme. Spanning Trees in Hypergraphs with Applications to Steiner
Trees. Ph.D. thesis, Computer Science Dept., The University ofiXia,
1998.

[6] D. M. Warme, P. Winter, and M. Zachariasen. Exact Aldamis for Plane
Steiner Tree Problems: A Computational Study. In D.-Z. DUM.JSmith,
and J. H. Rubinstein, editorgdvances in Steiner Trees, pages 81-116.
Kluwer Academic Publishers, Boston, 2000.

[7] P. Winter. An Algorithm for the Steiner Problem in the Hdean Plane.
Networks, 15:323-345, 1985.

[8] P. Winter and M. Zachariasen. Euclidean Steiner Minimilnees: An Im-
proved Exact AlgorithmNetworks, 30:149-166, 1997.

[9] M. Zachariasen. Rectilinear Full Steiner Tree Generati Networks,
33:125-143, 1999.

[10] M. Zachariasen and P. Winter. Concatenation-Base@djréieuristics for
the Euclidean Steiner Tree ProbleAlgorithmica, 25:418-437, 1999.

175
A Library Parameters

The parameters in GeoSteiner are divided into five groupd: geheration pa-
rameters (Section A.1), LP solver parameters (Section, Aypergraph solver
algorithmic options (Section A.3), hypergraph solver giog conditions (Sec-
tion A.4), and hypergraph solver input/output options (®ecA.5).

Parameters are modified as described in Section 3.6. Eaamptar is uniquely
identified by its macro name beginning witGT _PARAM). Below the effect of
each parameter is described. Also, the type of each paraietebl e, i nt,
char * orgst _channel _pt r) and range of possible values are given.

176 A LIBRARY PARAMETERS

A.1 FST generation parameters

GST_PARAMLVAX_FST_SI ZE

I nt
Maximum size (number of terminals spanned) of generate&sFST
Values
Any number greater than or equal to 2 (defalUlNT_MAX).
GST_PARAM.I NCLUDE_CCORNERS nt

Include corners of bent edges in FSTs in hypergraph embgddipplies to rec-
tilinear and uniform-orientation metric FST generatorlliding corners makes
the embedding easier to draw.

Values
GST_PVAL _| NCLUDE_CORNERS_DI SABLE 0 (default)
GST_PVAL _| NCLUDE_CORNERS_ENABLE 1

GST_PARAMLEFST_HEURI STI C nt

Heuristic used in the Euclidean FST generator: Smith-Liediban or Zachariasen-
Winter. The latter is slower but prunes more eq-points; ithisrefore recom-
mended for large and/or difficult instances.

Values
GST_PVAL_EFST _HEURI STI C SLL 0 (default)
GST_PVAL_EFST_HEURI STI C_ZW 1

GST_PARAM EPS_MULT_FACTOR

A.1 FST generation parameters 177

Epsilon multiplication factor F used in floating point comigans. The maximum
relative error is expected to be at moskFOBL _ESPI LON.

Values
Any number greater than or equal to 1 (default: 32).

GST_PARAM MULTI PLE_PRECI SI ON i nt

Use GNU Multi-Precision arithmetic library (GMP) in the Hulean FST gener-
ator in order to improve numerical precision of computegedts: 0: off; 1: use
GMP with 1 Newton iteration; 2: use GMP with 1 or more Newtoerdtions,

stopping when a convergence test indicates that 1/2 ULPexfigion has been
obtained.

Values

GST_PVAL_MULTI PLE_PRECI SI ON_OFF 0 (default)
GST_PVAL_MULTI PLE_PRECI SI ONLONE_I TER 1
GST_PVAL_MULTI PLE_PRECI SI ONLMORE_I TER 2

GST_PARAMLI NI TI AL_EQPO NTS_TERM NAL i nt

Number of eg-points initially allocated per terminal in tBeclidean FST genera-
tor. Although eg-point storage is added dynamically wheszdeel, some large or
difficult instances run out of memory if the initial allocatti is insufficient.

Values
Any number greater than or equal to 1 (default: 100).

GST_PARAM.BSD_METHCD i nt

Data structure for holding bottleneck Steiner distanceSOPB Either quadratic
space andonstant time lookup or linear space athdgarithmic time lookup. The
latter is recommended for very large instances.

178 A LIBRARY PARAMETERS

Values
GST_PVAL _BSD METHOD_CONSTANT 0 (default)
GST_PVAL_BSD_METHOD_LOGARI THM C 1

A.2 LP solver parameters 179

A.2 LP solver parameters

GST_PARAM.LP_SOLVE_PERTURB i nt

Use perturbations when solving LPs (only applicable whengip_solve as LP-
solver).

Values

GST_PVAL _LP_SOLVE PERTURB DI SABLE 0 (default)
GST_PVAL_LP_SOLVE_PERTURB_ENABLE 1
GST_PARAM LP_SOLVE_SCALE i nt

Use scaling when solving LPs (only applicable when usingdpve as LP-solver).

Values

GST_PVAL_LP_SOLVE SCALE DI SABLE 0 (default)
GST_PVAL _LP_SOLVE SCALE ENABLE 1
GST_PARAM CPLEX_ M N_ROWS i nt

Force the LP solver allocation to be at least N rows (only igpple when using
CPLEX as LP-solver).

Values
Any non-negative number (default: 0).

GST_PARAML.CPLEX_M N_NZS i nt

Force the LP solver allocation to be at least N non-zerosy(applicable when
using CPLEX as LP-solver).

Values
Any non-negative number (default: 0).

180 A LIBRARY PARAMETERS

A.3 Hypergraph solver algorithmic options

GST_PARAM SOLVER ALGORI THM i nt
Hypergraph solver algorithm: Branch-and-cut, backtraesh, or chosen auto-
matically. Backtrack search is only applicable if the imsta has 32 or fewer hy-
peredges. Also note that some stopping conditions — suctBAsBJgap — are
not feasible for backtrack search. The automatic algorithns beektrack search
when the instance is small (see parameB3E PARAM BACKTRACK MAX VERTS
andGST_PARAM BACKTRACK MAX EDCGES); furthermore, it switches to branch-
and-cut when the the backtrack lind8T_PARAM MAX_BACKTRACKS is hit.

Values
GST_PVAL_SOLVER ALGORI THM AUTO 0 (default)
GST_PVAL_SOLVER_ALGORI THM . BRANCH_AND_CUT 1

GST_PVAL_SOLVER_ALGORI THVL.BACKTRACK_SEARCH 2

GST_PARAM NUM FEASI BLE SOLUTI ONS i nt

Number N of stored feasible solutions (top N solutions). Aueaof N for this
parameter instructs the solver to retain the N best feasdilgions discovered.

Values
Any number greater than or equal to 1 (default: 1).

GST_PARAM BRANCH VAR POLI CY i nt
Branch variable policy. 0: naive max of mins, 1: smarterdegraphic max of

mins, 2: product of improvements; 3: weak branching. Alligek except the last
one use strong branching.

Values
GST_PVAL_BRANCH VAR PQOLI CY_NAI VE 0

A.3 Hypergraph solver algorithmic options 181

GST_PVAL BRANCH VAR POLI CY_SNVART
GST_PVAL _BRANCH VAR POLI CY_PRCD
GST_PVAL_BRANCH_VAR_POL| CY_V\EAK 3

[—

(default)

N

GST_PARAM CHECK BRANCH VARS THOROUGHLY i nt

Search N times more thoroughly for strong branching vagisbl

Values
Any number from 1 to 1000 (default: 1).

GST_PARAM TARGET _POOL_NON ZEROS i nt

Target number of pool non-zeros; target is computed auioaiigtwhen value is
zero.

Values
Any non-negative number (default: 0).

GST_PARAM SEED POOL W TH 2SECS i nt

This parameter controls whether or not to seed the initiastraint pool with all 2-
terminal Subtour Elimination Constraints (SECs). Mostijpems have relatively
few of these, but some problems (such as those with many extgeaining a
large number of vertices) can blow up unless this is disabled

Values
GST_PVAL_SEED POOL_ W TH 2SECS DI SABLE 0
GST_PVAL_SEED POOL_ W TH 2SECS _ENSABLE 1 (default)

GST_PARAM.I NI TI AL_UPPER_BOUND
doubl e

182 A LIBRARY PARAMETERS

Value of initial upper bound for problem being solved.

Values
Any number (defaultDBL MAX).

GST_PARAM CHECK ROOT_CONSTRAI NTS I nt

When the optimal root LP relaxation is obtained, determareshich LP iteration
the number of final constraints whose first violation ocatdidaring that iteration.
This option creates a temporary file to hold the LP solutioatmefrom each
iteration. This file can grow very large.

Values

GST_PVAL _CHECK_ROOT_CONSTRAI NTS_DI SABLE 0 (default)
GST_PVAL _CHECK ROOT_CONSTRAI NTS_ENABLE 1
GST_PARAM LOCAL_CUTS_MODE i nt

Local cuts mode: O: disable local cuts; 1: apply local cutly avhen no sub-
tour violation exists; 2: apply local cuts to congested congnts that contain no
subtour violations; 3: apply local cuts in both cases.

Values
GST_PVAL _LOCAL_CUTS_MODE_DI SABLE 0 (default)
GST_PVAL _LOCAL _CUTS_MODE_SUBTOUR_RELAXATI ON 1
GST_PVAL _LOCAL _CUTS_MODE_SUBTOUR_COVMPONENTS 2

3

GST_PVAL _LOCAL _CUTS_MODE_BOTH

GST_PARAM LOCAL _CUTS MAX VERTI CES i nt

Local cuts will not be attempted for any subproblem havingeriban this number
of vertices.

Values
Any number from 0 to 80 (default: 80).

GST_PARAM LOCAL _CUTS_MAX_EDGES

A.3 Hypergraph solver algorithmic options 183

i nt

Local cuts will not be attempted for any subproblem havingeriban this number
of edges.

Values
Any number from 0 to 256 (default: 256).

GST_PARAM LOCAL _CUTS VERTEX THRESHOLD doubl e

A threshold valuex that prohibits local cuts on any fractional componéht=
(V', E') of a parent problent/ = (V, E') unlessV’| < a x |V|.

Values
Any number from 0 to 1 (default: 0.75).

GST_PARAM.LOCAL _CUTS_MAX_DEPTH i nt

Maximum recursive depth of local cuts. O: disable local clitsenable local cuts
with no recursion; 2: enable local cuts with two recursiwels. -1: enable local
cuts with recursion to any depth.

Values

GST_PVAL _LOCAL _CUTS_MAX_DEPTH_DI SABLE
GST_PVAL _LOCAL _CUTS_MAX_DEPTH_ONEL EVEL
GST_PVAL _LOCAL_CUTS_NVAX_DEPTH.TWOLEVELS
GST_PVAL _LOCAL_CUTS_NMAX _DEPTH ANYLEVEL

(default)

P NEFELO

GST_PARAM LOCAL _CUTS TRACE DEPTH i nt

Tracing of local cuts. 0: do not trace local cuts or their resue invocations;
1. trace first level of local cuts; 2: trace first two levels @4l cuts; -1: trace any
level of local cuts.

184 A LIBRARY PARAMETERS

Values

GST_PVAL _LOCAL_CUTS_TRACE_DEPTH_DI SABLE 0 (default)
GST_PVAL _LOCAL _CUTS_TRACE_DEPTH_ONEL EVEL 1
GST_PVAL _LOCAL_CUTS_TRACE_DEPTH.TWOLEVELS 2
GST_PVAL _LOCAL _CUTS_TRACE_DEPTH_ANYLEVEL -1

GST_PARAM.VAX_CUTSET_ENUMERATE_COWPS i nt
Controls the behavior of the zero-weight cutset separaiigorithm, which looks

for multiple connected components. If the numbéwnf connected components
does not exceed this threshold, then the separator generadecutset constraint
for each of the” — 2 possible combinations of connected components (excluding
the two combinations that take all or none of the componenih)s parameter

controls an exponential process, so setting it too high eaityeswamp the solver
with constraints.

Values
Any number from 0 to 11 (default: 5)

GST_PARAM . SEC_ ENUMLIM T i nt
Congested components having at most this number of verieegxhaustively
searched to find all violated subtour elimination constsirA component with
N vertices hag” — N —1 possible subtour elimination constraints. This parameter

therefore controls an exponential process — setting it tgh ban easily swamp
the solver with constraints or increase runtime.

Values
Any number from 0 to 16 (default: 10)

GST_PARAM.BACKTRACK_MAX_VERTS i nt

Backtrack search should only be attempted for solving MShyimergraph prob-
lem when the number of vertices is smaller than this value.

A.3 Hypergraph solver algorithmic options 185

Values
Any number from 0 to 32 (default: 8).

GST_PARAM. BACKTRACK_MAX_EDGES i nt

Backtrack search should only be attempted for solving MShyipergraph prob-
lem when the number of edges is smaller than this value.

Values
Any number from 0 to 32 (default: 12).

GST_PARAM MAX_BACKTRACKS i nt
Maximum number of distinct partial solution nodes to enuasteduring a single

run of the backtrack search algorithm. Note that if this timhit, the solver might
exit without having found an optimal solution.

Values
Any non-negative number (default: 10000).

GST_PARAM SPARSE_SUBTOURS int
There are two forms for hypergraph subtour constraints:dlassic” subtour, and

the form obtained by subtracting the “classic” inequalitynfi the single equation
of the formulation. If enabled, then generate the form tlzet the least number
of non-zeros (i.e., more sparse). If disabled, always gead¢he “classic” subtour
inequality.

Values
GST_PVAL_SPARSE SUBTOURS DI SABLE 0
GST_PVAL _SPARSE_SUBTOURS_ENABLE 1 (default)

GST_PARAM ZERO WEI GHT_CUTSETS_METHCD

186 A LIBRARY PARAMETERS

Controls the behavior of the zero-weight cutset separadlgorithm, which is
invoked when the support hypergraph of the current LP smiutonsists of two or
more connected components. For each such connected compihigealgorithm
generates either: (1) a pair of complementary subtour ialéegs; or (2) an actual
cutset inequalityrfot recommended).

Values
GST_PVAL_ZERO VEI GHT_CUTSETS_METHOD_SUBTOURS 0 (default)
GST_PVAL_ZERO VEEI GHT_CUTSETS_METHOD_CUTSET 1

GST_PARAM.STRENGTHEN_REDUCE nt

If enabled, attempt to strengthen generated subtour itidgaaby performing
the various reductions (greedy vertex deletion, connem@tponents and bicon-
nected components) on the subhypergraph induced by theegedf the subtour.

Values
GST_PVAL_STRENGTHEN REDUCE DI SABLE 0
GST_PVAL_STRENGTHEN REDUCE ENABLE 1 (default)

GST_PARAM GENERATE_UNSTRENGTHENED i nt
In

If enabled, generate violated subtours in their originatfe— before any strength-
ening is performed. (This is implcitly enabled38T _PARAM STRENGTHEN REDUCE
is disabled to prevent all violated subtours from beingatided.)

Values
GST_PVAL_GENERATE UNSTRENGTHENED DI SABLE 0
GST_PVAL_GENERATE UNSTRENGTHENED ENABLE 1 (default)

GST_PARAMI NI TI AL_PRI MAL_HEURI STI C

A.3 Hypergraph solver algorithmic options 187

If enabled, run the primal heuristic at the very start, (befany LPs have been
solved). Normally the primal heuristic is given the curreRtsolution as a “hint”
for constructing good solutions, but it can also run no switten. This option
is normally disabled because any such upper bound is ustegdlgced quickly
on the next invocation of the primal heuristic, after thetfitB has been solved.
Turning this option on permits a very quick solution.

Values
GST_PVAL_I NI TI AL_PRI MAL_HEURI STI C_DI SABLE 0 (default)
GST_PVAL | NI TI AL_PRI MAL HEURI STI C ENABLE 1

188 A LIBRARY PARAMETERS

A.4 Hypergraph solver stopping conditions

GST_PARAM.CPU_TI MELLIM T doubl e

CPU time limit for solver (in seconds); when the limit is zeno CPU time limit
is imposed.

Values
Any non-negative number (default: 0).

GST_PARAM GAP_TARGET doubl e

Exit solver when ratio UB/LB between the upper bound (UB) dredlower bound
(LB) is less than or equal to this threshold; e.qg., if target.01, the solver stops
when a solution within 1% from the optimum has been found.

Values
Any number greater than or equal to 1 (default: 1).

GST_PARAM_.UPPER_BOUND_TARCGET doubl e
Exit solver when a feasible solution whose length is at mastualue is found.

Values
Any number (default: DBL MAX).

GST_PARAM LONER BOUND_TARGET doubl e
Exit solver when the lower bound becomes greater than od égjtiais value.

Values
Any number (defaultDBL MAX).

GST_PARAM MAX FEASI BLE UPDATES

A.4 Hypergraph solver stopping conditions 189

i nt

Exit solver when N feasible solution updates have been mae® (means no
limit). A feasible update is either an insertion of a solatf any quality into
the (non-full) set of solutions, or a replacement of an iwiesolution with an
improved solution in the (full) set of solutions. The sizetbé solution set is
specified using paramet&ST_PARAM NUM FEASI BLE_SOLUTI ONS.

Values
Any non-negative number (default: 0).

GST_PARAMBB NCDE LIM T i nt
In

Stop the optimization after processing this many branaHaound nodes. If this
parameter is zero, there is no limit on the number of bramzhteound nodes
processed.

Values
Any non-negative number (default: 0).

GST PARAMBB LP LIM T i nt
In

Stop the optimization after processing this many LPs (ot separate itera-
tions). The number of LPs processed is a global number thaplkaely disre-
gards branch-and-bound node boundaries. If this paransesaro, there is no
limit on the number of LPs processed.

Values
Any non-negative number (default: 0).

GST_PARAMLI NI TI AL_PRI MAL_HEUR_STOP

190 A LIBRARY PARAMETERS

If this parameter andlNI TI AL_PRI MAL HEURI STI C are both enabled, opti-
mization stops immediately after this initial invocatiohtbe primal heuristic,

with a status ofGST_SOLVE_BB_STOP_REQUESTED. No LPs are solved, nor
is any branch-and-bound performed. This permits a verykgsmtution, but no

lower bound will be available, and therefore no indicatibsaution quality.

Values
GST_PVAL_I NI TI AL_PRI MAL_HEUR STOP_DI SABLE 0 (default)
GST_PVAL_I NI TI AL_PRI MAL_HEUR _STOP_ENABLE 1

A.5 Hypergraph solver input/output options 191

A.5 Hypergraph solver input/output options

GST_PARAM SAVE_FORVAT i nt

Format used bygst_hg_save()when saving a hypergraph to a file: 0: OR-library
format; 1. SteinLib format; 2: GeoSteiner FST format vensity 3: GeoSteiner
FST format version 3; 4: SteinLib format with integer edgegis.

Values

GST_PVAL_SAVE_FORVAT_ORL| BRARY
GST_PVAL_SAVE_FORVAT_STEI NLI B
GST_PVAL_SAVE FORVAT_VERSI ON2

A WNEFO

GST_PVAL_SAVE FORVAT_VERS| ON3 (default)
GST_PVAL_SAVE_FORVAT_STEI NLI B_I NT
GST_PARAM SAVE | NT_NUMBI TS i nt

Number of bits of precision to use in final integer edge weigivhen using
gst_hg_save()to save hypergraphs having Euclidean metric problems ite~in
ger” SteinLib format GST_PARAM _SAVE_FORMAT set to

GST_PVAL _SAVE_FORMAT _STEINLIB _INT).

Values
Value must be at least 32. Default value is 64.

GST_PARAM GRI D OVERLAY i nt

Used by functiorgst_hg_to_graph() to specify that the edges of the reduced grid
graph rather than individual edges of the embedding shoeldeturned (only
applicable for the rectilinear metric).

Values
GST_PVAL_GRI D_OVERLAY_DI SABLE 0
GST_PVAL_GRI D_OVERLAY_ENABLE 1 (default)

GST_PARAM DETAI LED TI M NGS_CHANNEL

192 A LIBRARY PARAMETERS
gst channel ptr
Detailed timing is written to this channel.

Values
Any valid channel pointer (defaul§ULL).

GST_PARAM PRI NT_SOLVE TRACE
gst channel ptr

Solver output trace is written to this channel.

Values
Any valid channel pointer (defaul§ULL).

GST_PARAM CHECKPO NT_FI LENAME char

Pathname P of checkpoint file to restore (if present) andpalate. The files
are actually named P.chk and P.ub, with temporary files ndtatp, P.new and
P.nub.

Values
Any valid pathname (defaultULL).

GST_PARAM CHECKPQO NT_I NTERVAL
doubl e

Perform checkpointing of solver process at a time intenwakéconds) given by
this parameter.

Values
Any number between 0 and 1000000 (default: 3600). A valuerak@ns that no
checkpointing should be performed.

GST_PARAM MERGE_CONSTRAI NT_FI LES

A.5 Hypergraph solver input/output options 193

char *

A colon-separated list of pathnames of checkpoint files.cAfistraints from the
constraint pool of each listed checkpoint file are merged the solver’s con-
straint pool before solving the current hypergraph problem

Values
A colon-separated list of pathnames of checkpoint filesaalefNULL).

194 B HYPERGRAPH PROPERTIES

B Hypergraph Properties

The following table shows the properties currently acddesn a hypergraph in-
stance. Read more about properties in Section 3.8.

Property Value

GST_PROPHG_HALF_FST_COUNT 10000
GST_PROPHG_GENERATION.TIME 20000
GST.PROPHG_MST_LENGTH 20001
GST_PROPHG_PRUNING.TIME 20002
GST_PROPHG_INTEGRALITY _DELTA | 20003
GST_PROPHG_NAME 30000

195

C Solver Properties

The following table shows the properties currently acd#esn a solver object.
Read more about properties in Section 3.8.

Property Value

GST_PROPSOLVER ROOT_OPTIMAL | 11000
GST_PROPSOLVER ROOT_LPS 11001
GST_PROPSOLVER NUM_NODES 11002
GST_PROPSOLVER.NUM_LPS 11003
GST_PROPSOLVER.INIT _PROWS 11004
GST_PROPSOLVER.INIT _PNZ 11005
GST_PROPSOLVER.INIT _LPROWS 11006
GST_PROPSOLVER.INIT _LPNZ 11007
GST_PROPSOLVER ROOT_PROWS 11008
GST_PROPSOLVER ROOT_PNZ 11009
GST_PROPSOLVER ROOT_LPROWS | 11010
GST_PROPSOLVER ROOT _LPNZ 11011
GST_PROPSOLVER FINAL _PROWS | 11012
GST_PROPSOLVER FINAL _PNZ 11013
GST_PROPSOLVER FINAL_LPROWS | 11014
GST_PROPSOLVER_FINAL _LPNZ 11015
GST_PROPSOLVER LOWER BOUND | 11016
GST_PROPSOLVER CPU.TIME 21000
GST_PROPSOLVER ROOT_TIME 21001
GST_PROPSOLVER ROOT.LENGTH | 21002

196

D Error Codes

D ERROR CODES

Error Code

Value

GST_ERR.UNDEFINED

GST_ERR_LIBRARY _CLOSED
GST_ERR_.PROPERTYNOT_FOUND

GST ERR PROPERTYTYPE MISMATCH
GST ERR BACKTRACK _OVERFLOW
GST_ERR_.SOLUTION_NOT_AVAILABLE
GST_ERR_.RANK_OUT_OF_RANGE
GST_ERR.NVALID _METRIC

GST ERR NO_EMBEDDING

GST_ERR ALREADY _CLOSED

GST ERR LP_SOLVER ACTIVE
GST_ERR_LOAD_ERROR
GST_ERR.INVALID _-NUMBER_OF_TERMINALS
GST ERR PARAMETER VALUE _OUT OF RANGE
GST ERR UNKNOWN_PARAMETER ID
GST ERRINVALID PROPERTYLIST
GST_ERR.INVALID _-HYPERGRAPH
GST_ERR.INVALID _~NUMBER_OF_VERTICES
GST_ERR.INVALID _NUMBER_OF_EDGES
GST ERR INVALID EDGE

GST ERRINVALID VERTEX
GST_ERR.INVALID _DIMENSION
GST_ERR.NO_STEINERSALLOWED
GST_ERR.NVALID _.CHANNEL

GST ERR INVALID CHANNEL _OPTIONS
GST ERR INVALID PARAMETERS OBJECT
GST_ERR.NVALID _-PARAMETER.TYPE
GST_ERR EFST.GENERATORDISABLED
GST_ERR.RFST.GENERATORDISABLED
GST_ERR.UFST_GENERATORDISABLED
GST ERR FST PRUNER DISABLED

GST ERR INVALID SOLVER

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1029
1030
1031
1032
1033

197

E FST Data File Formats

The FST generators produce output called FST data files.y(@leesometimes
called “phase 1 data files”, since FST generation is the firasp of the two-phase
process for computing Steiner trees.

FST data files come in three different formats, distinguildhye version numbers.
Currently there are three such formats corresponding wioes O, 2 and 3 of the
FST data format. (Version 1 is very obsolete, and no longepstied.)

Note that version 0 and 3 data formats can be used to desdeimeBtree in graph
(or hypergraph) instances. However, GeoSteinecan®ot solve such problems.
It blindly assumes all vertices are terminals. If given saohnstance, GeoSteiner
will produce the MST (i.e., the minimum tree spanngdgvertices, be they ter-
minals, Steiner vertices, or any mixture thereof.)

Version O

Version 0 is used to represent an abstract MST or Steineirtrgeaph or hyper-

graph problem instance. It is essentially the same formatsad in Beasley’s
“OR-library” — but extended slightly to handle hypergrapistances as well as
graph instances. The OR-library format is as follows:

<Nunber of vertices N> <Nunmber of edges M>
For each edge:
<Vertex 1> <Vertex 2> <Edge cost>
<Nunber of term nal vertices K>
<Terminal 1> <Terminal 2> ... <Termnal K>

Vertices are numbered 1 through N. Eacher mi nal i > is the vertex number
of a vertex that is a terminal (i.e., must be connected). JlBdge cost >’s are
real numbers.

We extend this format slightly by permitting each edge toehtavo or more ver-
tices. In exchange for this flexibility, we require the eatdescription of each
edge to reside on a single line of the data file. Thereforefjnlaénumber on each
line represents the hyperedge cost, and all preceding msrabé¢he line represent
the vertices of the hyperedge.

198 E FST DATA FILE FORMATS

Version 2

Version 2 is used primarily to represent geometric FSTsl{&ea&n or rectilinear),
although it can also handle non-geometric (graph) instarites unable, however,
to represent Steiner trees in hypergraph problems, bedaasseimes every vertex
is a terminal.

In the following description, fields enclosed #1x. . . >> are omitted when the
Metric is Graph. The format is as follows:

<Version Nunber: literally "V2">
<l nstance description (free text)>
<Metric: 1 = Rectilinear, 2 = Euclidean, 3 = Graph>
<Nunber of termnminals (N)>
<<Decinmal |ength of MST>> <<Hex | ength of MST>>
<<Nunber of duplicate term nal groups (ndg)>>
<Coordi nate/l ength scaling factor>
<Machi ne description (free text)>
<Front-end CPU-tinme (1/100s of a second (integer number)>
<Nunber of hyperedges/FSTs (M >
For each termnal:
<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>
For each duplicate ternmi nal group:
<<Nunber of duplicate term nal s>>
<<Term nal indices (1..N), on one line separated by spaces>>
For each hyperedge/ FST:
<Nunber of termnals (N)>
<Term nal indices (1..N), on one |line separated by spaces>
<Deci mal | ength of hyperedge/ FST> <Hex | ength of hyperedge/ FST>
<<Nunber of Steiner points (M)>>
For each Steiner point:

<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>

<<Nunber of FST edges (Ki)>>
For each FST edge:
<<endpoi nt - 1>> <<endpoi nt - 2>>

<FST status: 0 = never needed, 1 = maybe needed, 2 = al ways needed>

<Nunber of inconpatible FSTs>

<Inconpatible FST indices (1..M, on one |ine separated by spaces>

<Numnber of concatenation terninal s>
<Conc. terninals indices (1..N), on one |line separated by spaces>

199

Version 3

Version 3 is the default format, and represents geometricsKEuclidean or rec-
tilinear) as well as graph instances. Since it separatedgifips each vertex to
be either a terminal or Steiner vertex, it can also repreSéginer problems in
graphs/hypergraphs. A number of obsolete fields from vergis omitted, how-
ever.

In the following description, fields enclosed #1x. . . >> are omitted when the
Metric is Graph. The format is as follows:

<Version Nunber: literally "V3">
<l nstance description (free text)>
<Metric: 1 = Rectilinear, 2 = Euclidean, 3 = G aph>
<Nunber of terminals (N)>
<<Deci mal length of MST>> <<Hex | ength of MST>>
<Coordi nate/l ength scaling factor>
<Decimal Integrality delta> <Hex Integrality delta>
<Machi ne description (free text)>
<Front-end CPU-tinme (1/100s of a second (integer number)>
<Number of hyperedges/FSTs (M >
For each termnal:
<<DPec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>
For each termnal:
<Term nal / Stei ner flag: 0=Steiner, 1=Term nal >
For each hyperedge/ FST:
<Number of terminals (N)>
<Term nal indices (1..N), on one |line separated by spaces>
<Deci mal | ength of hyperedge/ FST> <Hex | ength of hyperedge/ FST>
<<Number of Steiner points (M)>>
For each Steiner point:
<<Dec X-coord>> <<Dec Y-coord>> <<Hex X-coord>> <<Hex Y-coord>>
<<Nunber of FST edges (Ki)>>
For each FST edge:
<<endpoi nt - 1>> <<endpoi nt - 2>>
<FST status: 0 = never needed, 1 = naybe needed, 2 = al ways needed>
<Nurber of inconpatible FSTs>
<Inconpatible FST indices (1..M, on one |line separated by spaces>

200 E FST DATA FILE FORMATS

The following conventions are observed in versions 2 and BB@fST data file
format:

e Data input routines require only that the individual datidBeare separated
by one or more white-space characters (space, tab, newdirtesal tab, and
form-feed are the white-space characters of ANSI C).

¢ Data output routines shall align items according to the sehabove:

— Schema fields that appear on separate lines shall be writteeparate
lines.

— Schema fields that are all on one line shall be written all anlore.
— The data shall be indented as shown by the schema.

— Each indentation level shall be one “tab stop”.

— The implementor may freely choose the width of this “tab &top

e The<lnstance description (free text)>and<machi ne description
(free text)> fields shall each be a sequence of 0 to 79 characters. Each
character in the sequence may be any printable ASCII clerextept new-
line.

e The<on one |ine separated by spaces> fields are permitted to span
several lines, so long as the additional lines are each tedean additional
“tab stop”. The intent of this splitting is to fully pack lisavithout exceed-
ing some column limit (e.g., 80 columns). If no data is to app@ben the
line is removed completely.

e All decimal fields shall bainscaled — just as in the original terminal coor-
dinate input data.

e The hexadecimal fields shall bealed. For example suppose that th@or di nat e
scal i ng factor>is K. Then the following relationship is implied:
<Dec X-coord> = <Hex X-coord> / 10+*K

where the equal sign is meant to imply “is within epsilon o8caling of
data shall be at the discretion of the FST generator. For pbathe FST
generator is permitted to always specify a scaling factarevbd — thereby
disabling the scaling feature. Programs that read FST dasastould not
assume that the hex-values (scaled or otherwise) areegjradtwithout first
verifying the actual data values.

201

e The<Decimal Integrality delta>(<Hex Integrality delta>)fields
represent aminscaled (scaled) lower bound on the amount by which two
solutions of different lengths must differ. For Euclidea8Trs, this must
always be 0. For rectilinear FSTs scaled to integer lendtisswould be
1 (scaled value). For graphs with integer weights, this dao be 1. The
branch-and-cut can use this to provide earlier cutoff ofesothat cannot
reduce the upper bound.

e Let fields<endpoi nt - 1> and<endpoi nt - 2>, occur within an FST contain-
ing V terminals andV/ Steiner points. Let the field value bk Then the
interpretation of the endpoint field is as follows:

1 < J < N = endpoint is the/th terminal in the FST’s list of terminals.
—M < J < —1 = endpoint is the-Jth Steiner point in the FST’s list of
Steiner points.

¢ (only applicable for version 2 of the FST data file format)
Duplicate terminal groups (DTGSs) identify subsets of thetizes having
identical coordinates:
— The size of each DTG shall be at least 2.
— Each terminal may be listed in at most one DTG.
— The terminal indices listed in a single DTG must be distinct.

— The first terminal in each duplicate terminal group shalldfenrenced
by at least one FST (having FST statd®).

— The remaining terminals in each duplicate terminal grougdISYOT
be referenced by any FST (having FST statug).

e If an FST has “never needed” status then the FST generatoronngyt
any incompatibility and concatenation terminal informatiam¢luding no
information at all (such information is redundant).

e The incompatible information shall NOT include the FST litse
e Theincompatible information need not include FSTs whi@t'aever needed”.

e The incompatible information need not include FSTs whicarshtwo or
more terminals. It is assumed that programs that read FS filleg are
smart enough to know about such basic incompatibilitie=aaly. Omitting
such incompatibilities can significantly reduce the sizéhefdata file.

202 E FST DATA FILE FORMATS

e The FST-graph for rectilinear FSTs must always be a “lefsthand “top-
most” Hwang topology. If not, such FSTs will not appear to beafg
topologies when plotted.

e A simple top-down traversal of each Euclidean FST-graptiistafrom the
first terminal must yield the recursive equilateral-pointisture of the FST.
In this way, programs that read Euclidean FST data files deg@loorrectly
compute the exact length of each FST in terms of algebraicbeusn if
desired.

Index

gst attachcplex, 26
gst.channeladd file, 140
gst.channeladd functor, 141
gst.channelgetopts, 138
gst channelprintf, 145
gst.channelrmdest, 143
gst.channelsetopts, 139
gst.channelwrite, 144
gst close geosteiner, 20
gst.closelpsolver, 24
gst.computescaleinfo_digits, 150
gst copy hg, 77
gst.copy_hg edges, 78
gst.copy_metric, 58
gst.copy_param, 37
gst.copy_proplist, 64

gst createchannel, 136
gst createhg, 76
gst.createmetric, 56
gst.createparam, 36

gst createproplist, 62
gst createscaleinfo, 147
gst.createsolver, 110
gst.delete property, 66
gst.deliver_signals, 156
gst detachcplex, 27

gst distance, 59
gstesmt, 30
gst.free_channel, 137
gst free hg, 79

gst free_metric, 57
gst.free_param, 38
gst.free_proplist, 63

gst free scaleinfo, 148
gst free solver, 111

gst generateefsts, 105
gst.generatefsts, 104
gst.generateofsts, 107

gst generaterfsts, 106
gstget chn param, 51
gst.get.dbl_param, 40
gst.get.dbl_property, 67

gst get hg edgeembedding, 93
gst get hg edgestatus, 97
gst.gethg edges, 88
gst.gethg_metric, 99

gst get hg numberof vertices, 87
gst get hg one edge, 90

gst get hg one edgeembedding, 95
gst.gethg onevertex embedding, 92
gst.get.hg properties, 101

gst get hg scaleinfo, 100

gst get hg terminals, 86
gst.gethg vertex embedding, 91
gstgetint_param, 44

gst getint property, 68

gst get metric info, 60
gst.getparamid, 52

gstget paramtype, 53
gst.getpoints, 149

gst get properties, 71

gst get property type, 65
gst.getsolverhypergraph, 115
gst.getsolverparam, 116

gst get solver properties, 119
gst get solver status, 114
gstgetstr_param, 48
gst.getstr_property, 69

gst hg prune edges, 108

gst hg solution, 117

203

204

gst hg solve, 112

gst hg to_graph, 102
gsthgmst, 33

gstload._hg, 153
gstlpsolver.versionstring, 25
gstnodegetlb, 133

gst node get Ib_status, 125
gstnodegetlp_index, 131

INDEX

gst set str property, 74
gstsmt, 29
gst.unscaleto_double, 152
gstunscaleto_string, 151
gstversion, 22

gst versionstring, 21

gst.node get.node branchdirection, 130

gstnodeget.nodebranchvar, 129
gst node get node depth, 128
gst nodeget nodeindex, 126

gstnodeget parentnodeindex, 127

gst.nodeget.solution, 132
gstnodeget.solver, 123
gstnodeget.ub, 134

gst nodeget z, 124
gst.opengeosteiner, 19
gst.openlpsolver, 23
gstosmt, 32

gst query dbl param, 41

gst query int_param, 45
gstrsmt, 31

gstsavehg, 154
gstsetbb_callbackfunc, 122
gst.setchn_ param, 50

gst setdbl param, 39

gst set dbl property, 72
gst.sethg edgeweights, 82
gstsethg edges, 81
gst.sethg_metric, 84

gst set hg numberof vertices, 80
gst set hg scaleinfo, 85
gst.set hg vertex embedding, 83
gstsetint_param, 43
gstsetint_property, 73

gst set param, 54

gst set str param, 47

